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Abstract—Motor expertise has recently been associated with differences in domain-general cognition. Studies
using averaged neurophysiological signals (e.g., event-related potentials) have shown varying degree of
expertise-related differences in neural activity. As a result, the precise mechanisms underlying these differences
remain to be described. Here we used multiscale entropy analysis (MSE) to investigate whether the complexity of
underlying neural systems working in a wide-range time scales can better explain the cognitive characteristics of
athletes with different domains of expertise. Behavioral and electroencephalograms (EEG) measures of athletes
practicing an interceptive sport (badminton; n = 17) or a static sport (long-distance running; n = 17) were
assessed during a flanker task with varying degrees of response conflict. The interceptive sport players showed
superior behavioral performance overall on the task relative to the static sport players. Although both groups
exhibited greater sample entropy across most time scales in high-conflict relative to low-conflict trials over the
parietal site, this effect was only evident at coarser time scales over the midfrontal site for the interceptive sport
players. Together, our results suggest that individual differences in motor expertise may be associated with dif-
ference in information-processing capacity and information integration during cognitive processing, as demon-
strated by differential cognitive modulation of brain signal variability. © 2019 IBRO. Published by Elsevier Ltd. All
rights reserved.
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INTRODUCTION level, sport expertise has been associated with higher

Empirical id ¢ iati betw proficiency on a variety of laboratory-based cognitive
mpirical evidence suggesls an association between measures, including cognitive control (Bianco et al.,

cognition and success in real-world sports performance 2017; Wang et al., 2013a; Wylie et al., 2018), working

(Cona et al,, 2015, Vestberg et al., 2012; Vestberg memory (Moreau 2013), spatial ability (Moreau et al.,
et al., 2017). Ifurther, athletes have been shown to have 2012; Wang et al., 2015), and selective attention (Alves
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processing in sports may benefit everyday fast-paced et al., 2010), with evidence showing greater cognitive per-
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indicate that brain and cognitive functioning can be on continuous adaptation to changing environments.

enhanced via long-term sport train_ing, from Ig_ss °°”_‘P,'ex These types of sports contrast with closed-skill sports,
sensory-perceptual processes o richer cognitive abilities which tap different abilities such as sustained attention
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sports and the measured cognitive tasks involve overlap-
ping cognitive processes. For example, one major cogni-
tive skill involved in baseball hitting practice, deciding
whether or not to swing as quickly as possible, may lead
to improved performance in a response inhibition task (a
visual go/no-go task) (Kida et al., 2005), as the specific
type of task stimuli does not fundamentally alter the
underlying cognitive processes involved.

A handful of recent studies have compared
electrophysiological measurements (e.g., event-related
potentials, ERPs) of athletes practicing different sport
types (Bianco et al.,, 2017; Chueh et al.,, 2017; Wang
et al., 2017; Yamashiro et al., 2015) to characterize the
emergence of cognitive transfer. However, the available
evidence remains scarce and inconclusive. Within a sam-
ple of baseball players and athletic controls from closed
skill sports (i.e., track-and-field and swimming),
Yamashiro et al. (2015), employing a go/no-go task,
investigated the presence of sport-type differences in
Nogo-N2, highly relevant to inhibitory control (Folstein
and Van Petten 2008). Although there was no group dif-
ference in behavioral performance, baseball players were
found to exhibit faster and stronger N2 activity than ath-
letic controls. These findings suggest that enhanced inhi-
bitory control processes via a specific athletic training
experience do not necessarily translate into behavioral
benefits. In contrast with the above findings, Chuehet al.
(2017) did not observe any differences in behavior and
ERP components associated with visuo-spatial cognitive
processing between open-skill athletes (i.e., badminton
and tennis) and closed-skill athletes (i.e., track-and-field
and swimming). More puzzling perhaps is the absence
of neural effects, given the presence of behavioral differ-
ence, which was found in Wanget al. (2017). In this study,
they measured cognitive control performance and
conflict-related N2 during a flanker task in badminton
players and closed skill sport athletes. Although bad-
minton players showed superior behavioral performance
relative to closed skill sport athletes, comparable
conflict-related modulation of N2 was observed. That is,
badminton players’ advantage in cognitive control that
was observed behaviorally was not reflected in the related
neural response.

If individual difference in sport expertise modulates
domain-general cognition (Jacobson and Matthaeus,
2014; Moreau, 2013; Voss et al,, 2010; Wang et al,,
2013b), why is this not reflected at the neural level?
One possibility is that the unique neurocognitive function-
ing in athletes is not adequately captured via the sole
measurement of mean neural activities (e.g., the ERPs).
For example, if sport can be conceptualized as a com-
plex, nonlinear system that operates within neural dynam-
ics, valuable information may be ignored in a linear
analysis approach which models neural activity as a sta-
tic, local entity (Hutka et al., 2013). In this regard, we
adopted a novel application of brain signal variability,
the moment-to-moment fluctuations in neural dynamics,
to address this issue. Typically, the variability in neural
time-series is completely ignored or is regarded as back-
ground noise resulting from low signal-to-noise ratio in a
time-averaging analysis (Garrett et al., 2013b; Hutka

et al., 2013; Hutka et al., 2016). However, it has recently
been claimed that the “noise” or variability in brain activity
provides meaningful information about network dynamics
in the brain (Garrett et al., 2013b). That is, a more variable
response may reflect a network with greater number of
potential functional configurations or brain states (Deco
et al., 2011). Variability in brain signals can thus serve
as a proxy into the information-processing capacity of a
complex system and of information integration across
the network (Garrett et al., 2011; Garrett et al., 2013b;
Heisz et al., 2012; Hutka et al., 2016).

Recently, brain signal variability has also proved
useful in understanding complex brain systems and their
association with task demands, cognitive performance
and individual differences (Deco et al., 2011; Garrett
et al, 2011; Garrett et al., 2013b). For example,
Garrettet al. (2013a) found that variability in blood oxygen
level-dependent signal increased with changing cognitive
demands, in particular for the younger, faster, and more
consistent performers. In relation to this finding,
Takahashiet al. (2009) revealed that electroencephalo-
graphic (EEG) variability increased in response to photic
stimulus in young adults but not in elderly adults, reflect-
ing a age-related difference in functional cortical
responses to visual stimulus. In addition, Lianget al.
(2014), using a stop-signal task, observed that the EEG
activity of successful stop trials was more variable relative
to that of failed stop trials, suggesting a greater ability to
adapt to environmental changes during successful stop-
ping (i.e., an irregularly-intervening sudden “stop” signal).

There exist several families of statistics for computing
temporal variability in neuroimaging signals, such as
variance, standard deviation, mean square successive
differences, and multiscale entropy (MSE) (Garrett
et al., 2013b). Of these, MSE does not capture the overall
variance but rather the point-to-point transitions in time
series. MSE, in short, is a fractal scaling measure of sig-
nal complexity or temporal unpredictability of a physiolog-
ical signal that calculates sample entropy across multiple
time scales, ranging from fine- to coarse-grained
sequences (Costa et al., 2002; Costa et al., 2005). Sam-
ple entropy was developed to quantify the regularity of
time series over time via the identification of reproducible
patterns (Costa et al., 2002; Courtiol et al., 2016;
Richman and Moorman 2000). A higher entropy value
indicates that the signal is less regular and information
rich, and is commonly referred to as greater signal com-
plexity, whereas a lower entropy value indicates that the
signal is more predictable and less complex (Grundy
et al.,, 2017; Heisz et al., 2012; Liang et al., 2014).
Because MSE calculates sample entropy at multiple time
scales, it is highly sensible to distinguish meaningful vari-
ability from white noise (Costa et al., 2005), and provides
more comprehensive indices of brain signal variability
than a single timescale (Catarino et al., 2011; Ueno
et al., 2014). Specifically, sample entropy at smaller
scales capture short-range temporal unpredictability,
which reflects local network dynamics. In contrast, sam-
ple entropy at larger scales capture long-range temporal
irregularity which represents distributed network dynam-
ics (Grundy et al., 2017; Vakorin et al., 2011). Thus, the
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assessment of temporal relationship in brain signals via
MSE may provide crucial information about the relative
contribution of local and global network dynamics under-
lying cognitive processes.

Recent investigations have demonstrated promising
applications of MSE to examining cognitive transfer
effects of motor training or lifetime experience
(Carpentier et al., 2016; Hutka et al., 2016). One study
by Grundyet al. (2017) observed greater MSE values of
EEG during task-switching processes in bilinguals than
in monolinguals. Because greater signal variability has
been linked to the ability to alternate between functional
brain states more readily (Beharelle et al., 2012; Grundy
et al., 2017), these findings suggest that a second lan-
guage experience leads to an improved capacity to switch
between multiple functional states as a result of practice
switching between languages. Further, musical training
was also found to increase EEG signal variability when
performing untrained music and verbal tasks (Carpentier
et al., 2016), suggesting training-induced increases in
the diversity of brain network states supporting music skill
acquisition and its generalizability to language skills. As
such, MSE may have the potential to characterize the
type of cognitive transfer elicited from sports training.

This study was designed to explore the potential
mechanisms underlying individual differences in sport
expertise, by measuring brain signal variability during a
cognitive control task. The MSE analysis was applied to
the continuous EEG signals recorded during a flanker
task from players practicing an interceptive sport (i.e.,
badminton) which requires coordination between a held
implement (e.g., a racket) and an object (e.g., a ball) in
the environment, and a static sport (i.e., long distance
running) which involves highly consistent, self-paced
situations (Voss et al., 2010). The choice of athletes from
the two sport types was based on the meta-analysis study
showing differences in cognitive superiority in fundamen-
tal cognitive tasks (Voss et al., 2010). Further, the flanker
task provides an excellent means for testing attentional
control (Eriksen and Eriksen 1974) and has been shown
relatively higher sensitivity than other attentional para-
digms in studies examining the sport-cognition relation-
ship (Voss et al., 2010).

For the behavioral analysis, and in addition to the
mean-level dependent variable, this study measured
intra-individual variability, an indicator of transient,
within-person change in behavioral performance
independent of mean reaction times (RTs) (Di Russo
et al.,, 2010; MacDonald et al., 2006; Wu et al., 2011).
Response variability is considered to be a valid behavioral
index of cognitive control in flanker tasks (Wang et al.,
2017; Wu et al.,, 2011) and is sometimes more sensitive
to individual differences than mean measures
(MacDonald et al., 2006). Importantly, there is increasing
evidence showing a negative association between behav-
ioral variability and brain signal variability (Garrett et al.,
2013b; Mclintosh et al., 2008). Thus, we characterized
the relationship between variability in brain activity and
behavior, to refine our understanding of the way sport
expertise is related to the difference in brain functioning.
Notably, because previous work has recommended using

complementary methods when interpreting MSE results
(Courtiol et al., 2016; Richman and Moorman 2000), we
also analyzed simpler measures of EEG signals associ-
ated with flanker interference such as N2d, P3d compo-
nents as well as midfrontal theta oscillation (Nigbur
et al., 2012; Nigbur et al., 2011; Tillman and Wiens 2011).

We hypothesized that if interceptive sport and static
sport experience lead to differences in information
processing capacity, brain signal variability during
cognitive processing measured by MSE would differ
between the two groups, providing corroborating
evidence to typical findings reporting averaged neural
activity. Furthermore, we expected a positive
association between MSE values and behavioral
performance, assuming that moment-to-moment
variability in neural activity is sensitive to processing
capacity (Mcintosh et al., 2008).

EXPERIMENTAL PROCEDURES
Participants

Seventeen athletes practicing an interceptive sport
(badminton, with at least 5years of training) and 17
athletes from a static sport (long distance running, with
at least 7 years of training) participated in this study.
Only male athletes were recruited to avoid obscuring the
effect of interest with gender-related variability in
performance (Voss et al., 2010). All athletes were ranked
as Division Il in the National Intercollegiate Athletic
Games. In addition, all athletes self-reported being active
in regular training for at least 3 training sessions per week
(at least 2 hours/session for badminton and 2.5 hours/
session for track-and-field). Participants’ anthropometric
measures are presented in Table 1. All the participants
had normal or corrected-to-normal vision and were right-
handed. No individuals reported having a history of neuro-
logical problems or cardiovascular diseases, nor were any
taking medications known to affect cognitive function. In
addition, none of the participants showed any symptoms
of negative emotions that could have affected cognition,
as measured by the Beck Depression Inventory Il (BDI-
Il; all scored below 13). Informed consent was obtained
from all participants, and the study was approved by the

Table 1. Demographics of participants in each group (standard
deviation in parentheses)

Group Interceptive sport Static sport
(n=17) (n=17)

Age (year) 20.76 (2.93) 20.71 (2.32)

BMI (kg/m?) 21.75 (1.02) 21.28 (1.87)

BDI (scores) 2.76 (2.66) 2.88 (2.32)

Education 14.74 (1.95) 14.71 (1.36)
(years)

PACER laps 87.18 (10.68) 89.12 (14.54)

Experience 7.82 (1.33) 8.41 (1.18)
(years)

Estimated 55.91 (0.95) 55.88 (1.36)
VO2max

Demographics of participants in each group (standard deviation in parentheses).
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Human Research Ethics Committee at National Cheng
Kung University.

Measures

Aerobic fitness assessment. In order to control for the
potential influence of aerobic fithess on cognitive control
and the underlying neural activities (Wang et al.,
2019b), participants’ aerobic fitness was evaluated using
the Progressive Aerobic Cardiovascular Endurance Run
(PACER) test, which has been used for examining aero-
bic fitness in healthy young adults and athletes
(Boiarskaia et al., 2011; Wang and Tu, 2017). All partici-
pants completed the PACER test during their scheduled
training time, under the supervision of university coaches,
and the test was administered by the research assistants.
After collecting the PACER scores (total laps), we esti-
mated participants’ VO2max values by the equation:
41.77 + (PACERIlaps * 0.49) — 0.0029 * PACERIlaps? -
—(0.62 * BMI) + 0.35 * (age * gender), where gen-
der = 0 for females, 1 for males (Boiarskaia et al., 2011).

Behavioral paradigm. Cognitive and EEG data were
collected either prior to physical training sessions or on
days during which no training occurred, in order to avoid
acute effects of physical training on brain functioning
(Moreau and Chou, 2019).

We used an arrow version of the flanker task
programmed using E-prime 2.0 (Psychology Software
Tools, Inc, Sharpsburg, PA) to measure cognitive
control performance (Alves et al.,, 2013; Wang et al,
2017). In this task, participants were required to respond
to a centrally presented target arrow while ignoring flank-
ing arrows. Typically, subjects involuntarily process the
flankers despite the fact that they are to be ignored, as
evidenced by prolonged responses when processing tri-
als involving incongruent flankers (Bunge et al., 2002;
Eriksen and Eriksen 1974).

In the current version of the flanker task, all arrow
strings were presented in white against a black
background, on a 21-inch cathode-ray tube display.
During each trial, a central fixation cross (0.5° x 0.5°)
appeared on screen for 300 ms. The central target
arrow, together with all flanking arrows, appeared
subsequently. The target arrow pointed either in the
same direction as (congruent trial;, < <<<<<< or
>>>>>>>) as the flanking arrows, or in the
opposite direction (incongruent trial;, <<><< or
> > < > >). The two trial types were equally distributed
within each block. The target arrow pointed to in a given
direction for 50% of the trials, evenly divided for the
congruent and incongruent trials. The arrows were
presented on screen until either the participant made a
response or untii 2s had elapsed. Each trial was
followed by a blank screen of a duration ranging from
1000 to 1500 ms. Participants were instructed to
respond by pressing “N” or “M” on the keyboard using
their right index and right middle fingers, respectively.

All participants performed the flanker task with
concomitant EEG recording. They all received 12
practice trials, to ensure they had understood the task
before data collection started. Participants completed 2

blocks of the task, each consisting of 120 trials, for a
total of 120 congruent trials and 120 incongruent trials.

EEG recording

EEG activity was recorded using a Nu-Amps EEG
amplifier and the Scan 4.3 package (Neuroscan Inc., El
Paso, TX, USA) with 32 electrodes mounted on an
elastic cap (Quik-Cap; Compumedics, Neuroscan Inc.),
designed for the International 10-20 System. The left
(A1) and right (A2) mastoids [(A1 + A2)/2] were used
as the online reference, and a ground electrode was
placed on the mid-forehead of the Quik-Cap. Two sets
of bipolar electrodes were placed on the upper and
lower sides of the left eye and on the canthi of both
eyes in order to monitor vertical (VEOG) and horizontal
(HEOG) eye-movements. Electrode impedances were
kept below 10kQ. EEG data were acquired with an
analogue—digital rate of 1000 Hz per channel, filtered
with a Butterworth bandpass filter (0.1—70 Hz), a 60-Hz
notch filter, and were written continuously to a hard disk
for subsequent offline analysis.

Data reduction and statistical analyses

Behavioral data. E-prime 2.0 was used to record
behavioral performance in terms of RTs (in
milliseconds) and accuracy. RTs were excluded from
subsequent analysis if there were (1) non-response
trials, (2) error trials, or (3) trials with latencies more
than three standard deviations above the mean latency
value on correct trials. Variability in behavioral
performance was evaluated using the intra-individual
coefficient of variation (cvRT: standard deviation/mean
RT within each participant). We adopted cvRT to
circumvent the fact that the standard deviation often
scales with the mean (Mclntosh et al., 2008).

A 2 (groups: interceptive sport, static sport) x 2 (trial
type: congruent, incongruent) mixed-design ANOVA with
a Bonferroni adjustment for multiple comparisons was
conducted to analyze the mean RT and cvRT with the
significance level set at p <0.05. All analyses were
carried out using SPSS 18.0.

Event-related potentials. A correction for eye-blinks
was first applied to the EEG data, with eye-blink peaks
being derived from VEOG by means of regression and
correlation and these data used to perform eye
movement correction for all electrodes. The ocular-
corrected EEG was first segmented into epochs ranging
from —100 ms to 800 ms relative to the stimulus onset.
The EEG data were then filtered with a digital band-
pass of 0.1 and 30 Hz (12 dB/octave) with a FIR filter.
The 100 ms pre-target period was used for baseline
correction. Data with behavioral errors or artifacts with
amplitudes +100 pV were discarded. The rest of the
resulting artifact-free data was then averaged according
to each trial type. This study used the difference
waveforms (Gajewski and Falkenstein, 2013), calculated
by subtracting the individual ERP average from
incongruent-stimulus trials from those from congruent-
stimulus trials, to assess the effects of flanker on ERP
components. Here we examined the N2 and P3 difference
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wave forms from electrodes adjacent to midline frontal
site (i.e., FCz). Visual inspection of the average ERP
waveforms (Fig. 2) indicated that the N2d was most evi-
dent in the time window between 300 and 400 ms, while
the P3d was most evident in the time window between
450 and 650 ms following stimulus onset. The mean
amplitude within these time windows were thus extracted
for the analysis of the N2d and P3d. The group difference
in the two ERP components were examined using an
independent t-test in SPSS 18.0.

EEG data preprocessing. The same correction
procedure for eye-blinks was also applied to the EEG
data which was segmented into epochs ranging from
—1500 to 1500 ms relative to the stimulus onset. Trials
containing artifacts with amplitudes exceeding + 150 pV
were discarded (Liang et al., 2014; Wang et al., 2019c).
These artifact-free EEG data were used for the subse-
quent analysis of EEG power and MSE values.

EEG power analysis. The analysis of EEG power was
performed using SPM8 for MEG/EEG (Wellcome
Department of Cognitive Neurology, London, UK;
www fil.ion.ucl.ac.uk/spm/) and custom Matlab
(MathWorks) scripts (Hsu et al., 2014). Oscillatory power
amplitude was computed by a continuous Morlet wavelet
transform (Morlet wavelet factor = 6) of single-trial data
for the frequency band ranging from 2 to 50 Hz (Roach
and Mathalon 2008). Oscillatory power (the magnitude
of the analyzed signal), defined as the square of the mod-
ulus of the resulting complex number, was then averaged
across trials. The averaged oscillatory power of each con-
dition for each participant was rescaled by the baseline
values from —500 to —300 ms relative to stimulus onset
(Nigbur et al., 2012), and taking the log10 transform of
this quotient (dB) (dB power = 10 x 10 [power/baseline]),
allowed a direct comparison of results of interest across
frequencies. On the basis of previous studies showing
evident event-related changes in theta oscillations at mid-
frontal area when perform a flanker task (Cavanagh et al.,
2009; Padréo et al., 2015; Zavala et al., 2013), we thus
focus on theta power activity at FCz for the subsequent
analysis. A mixed-design ANOVA was conducted to test
if the power changed as a function of trial type (congruent,
incongruent) or group (interceptive sport, static sport).
Values for all time-points, frequencies, and conditions
were used in the ANOVA analyses. The significance
threshold for all tests was set at g < 0.05 with a false dis-
covery rate (FDR) correction (Benjamini and Yekutieli
2001).

Multiscale entropy analysis. Brain signal variability in
different time scales was estimated using multiscale
entropy analysis (Costa et al., 2005). EEG data was ana-
lyzed using SPM8 and custom MATLAB (Math Works)
scripts (Liang et al., 2014; Wang et al., 2014). The algo-
rithm for the MSE analysis is available at http://www.
psynetresearch.org/tools.html.

Before computing the MSE, a detrending procedure
was employed to the EEG signals from each trial to
make brain signals stationary. This detrending
procedure was achieved by removing the last mode (i.e.
“trend”) obtained from empirical mode decomposition
(EMD) (Huang et al., 1998). We then calculated MSE

from the detrended EEG signals in two steps and was
performed from time scales 1 to 25 in the following time
windows: —100 to 500 ms relative to the stimulus onset
in the attention condition. First, the algorithm progres-
sively down-sampled the EEG post stimulus time series
for each trial in each condition. This down-sampling
procedure was defined as a coarse-grained procedure
along various time scales in the MSE analysis. For
time scale 1, the _gparse-grained time series
YW = {y(1),y(2),...,y(N )} was obtained by averaging
data points within non-overlapping windows of length 7.
Therefore, each element of a coarse-grained time series,
J, was calculated according to:

1 Jt o~ o~ N
y([):EZ (X where 1 Sj<N N =

i=(j-1)T+

Second, the algorithm computed the sample entropy
for each coarse-grained time series Y. Note that all
the superscripts (z) are omitted in the following to
simplify the notation. There are two specified
parameters for calculating the sample entropy: pattern
length m and tolerance level r for similarity comparisons.
Given the coarse-grained time series Y, the sample
entropy was calculated as follows: first, construct

Kl—m + 1vectors
Yu()): Yo ={y(i+k)}, 0<k<m—1

where the distance between two vectors is defined as the
absolute maximum difference between the corresponding
scalar components

A[Yn(), Yn()] = max(|y(i+ k) —y(+K)), 0<ksm—1.

Given r, n/™ is defined as the number of vectors Y,,{/)
falling within vector distance r*s of Y,,(j) without allowing
self-matches, where s is the standard deviation of the

original time series. Similarly, n/™"" is defined as the
number of vectors Y, 1(j) falling within vector distance
r’s of Y,+4(i). Finally, sample entropy was defined by

the negative natural logarithm of the conditional

probability that a time series of length N, having
repeated itself within a tolerance r*s (similarity factor) for
m points pattern, will also repeat itself for m + 1 points
pattern

Se(m, r, Ki) - |nw

N—m ; m+1
=1 i

Although there are no recommendations regarding the
optimum parameters for calculating sample entropy
values in EEG studies, some theoretical and clinical
applications (Escudero et al., 2006) have suggested set-
ting m = 1 or 2 to provide high validity for measuring sam-
ple entropy in EEG signals. Thus, in the present study the
pattern length, m, was set to 1; that is, one consecutive
data point was used for pattern matching. The setting of
m higher than 1 (e.g., 2) in the current study is limited
by the short data length of the present cognitive task.
However, because the aim of applying MSE in the current
study is to measure brain signal/state variability rather
than the complicated deterministic chaotic patterns, the
setting of m equal to 1 could be a relevant choice to
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achieve the purpose. In addition, the aforementioned
detrending procedure by EMD could also be helpful to
improve stability and reliability of the MSE result obtained
by m = 1. In terms of r value (i.e., the similarity criterion),
because a number of EEG study investigating brain-
behavior relationship have applied the r ranging from
0.25 to 0.5 to MSE analysis (Carpentier et al., 2016;
Escudero et al., 2006; Grundy et al., 2017; Heisz et al.,
2015; Heisz et al., 2012; Liang et al., 2014; Takahashi
et al., 2009; Wang et al., 2019¢; Wang et al., 2014), here
the r was set to 0.35, which means that data points were
considered to be indistinguishable if the absolute ampli-
tude difference between them was < 35% of the time ser-
ies standard deviation. In addition, because previous
research has suggested that data lengths of 10™ to 20"
(m: pattern length) should be sufficient to estimate sample
entropy (Richman and Moorman 2000), where in estima-
tion of sample entropy in the current coarse-grained EEG
data (before the coarse-graining procedure), 600 time
points may be sufficient for m = 1 with time scales 1-
25. The time scale indicates the length of each non-
overlapping time bin within which the original data were
averaged; for example, time scale 20 refers to averaging
within each 20-ms window when the original sampling
rate was 1000 Hz.

Based on prior neurcimaging and electrophysiological
studies demonstrating that brain activites in the
midfrontal and parietal areas are important for
processes in flanker tasks (Bunge et al., 2002; Kopp
et al., 1996), the electrodes of interest (FCz, Pz) were
selected for analysis to test the effect of sport expertise
on the EEG complexity during cognitive control process.
The Oz electrode was selected to examine whether the
effects of interest are due to the changes in basic visual
processing. To test the trial type effect (congruent; incon-
gruent) and group effect (interceptive sport players; static
sport players) for each electrode, a g < 0.05 with a false
discovery rate (FDR) correction (Benjamini and Yekutieli
2001) for multiple comparisons was employed.

Behavior-EEG correlations. Correlations between the
behavioral and EEG measures were examined to gain
insight into the brain-behavior relationship. Although we
mainly focus on MSE for the correlation analysis due to
the fact that both groups showed differential patterns of
cognitive modulation on MSE values, the other simpler
measures of EEG signals (i.e., N2d, P3d and theta
power) were also analyzed. Here we examined whether
the interference scores of behavioral variables would
correlate with those of EEG variables. The correlation
analyses were conducted for each group as well as for
all participants using the Pearson product-moment
correlation with a significance level set at « = 0.05. We
employed an FDR correction approach (Benjamini and
Yekutieli 2001) to account for multiple comparisons.

RESULTS
Participant demographics

Demographic variables including age [{(32) = 0.10,
p =.919], body mass index (BMI) [{32)= 0.91,
p = .374], BDI scores [t(32) = —0.14, p = .891], years

of education [{(32) = 0.10, p = .919], PACER laps [f
(32) = —0.44, p = .662], years of training experience [t
(32) = —1.36, p = .182] and estimated VO2max value
[t(32) = 0.07, p = .946] did not differ between groups
(Table 1).

Behavioral performance

Accuracy. The groups did not differ in terms of task
accuracy [f(32) = —1.54, p = .134]. The interceptive
sport players performed with 96.97 + 2.84 % accuracy,
and the athletic controls performed with 98.21 + 1.68 %
accuracy.

Mean RT. As illustrated in Fig. 1A, the participants had
significantly lower RT for congruent trials compared to
incongruent ones [F(1, 32) =480.20, p =.043,
nf, = 0.12]. The main effect of group was also significant
[F(1, 32) = 4.43, p = .015, 2 = 0.17], with mean RT
for interceptive sport players significantly lower than that
for static sport players. The trial type by group
interaction was not significant [F(1, 32) = 3.12,
p = .087, »5 = 0.09].

cvRT. As illustrated in Fig. 1B, participants had a
significantly smaller cvRT for congruent trials compared
to incongruent ones [F(1, 32) =13.20, p <.001,
np = 0.29]. The main effect for group was also
significant [F(1, 32) = 4.65, p = .039, nf, = 0.15], with
the RT variability for badminton players significantly
lower than for athletic controls. The trial type by group
interaction did not reach significance [F(1, 32) = 1.87,
p = .67, n = 0.01].

Event-related potentials

The amplitudes of N2d and P3d at FCz are illustrated in
Fig. 2. Independent t-tests revealed that no difference
between groups in N2d amplitude [{(32) = 0.09,
p = .933 ] (static sport players: —2.53 + 2.80 pV vs
interceptive sport players: —2.62 £ 3.20 pV) or P3d
amplitude [t(32) = 0.56, p = .582 ] (static sport players:
4.80 +£ 248 uV vs interceptive sport players: 5.30
+ 2.71 uV) was observed.

EEG power analysis

A mixed-design ANOVA revealed a significant main effect
of trial type at the theta band (4—7 Hz, around 200 to
550 ms) (all gs < 0.05 FDR corrected). However, no
significant effects were observed for group (all
gs > 0.05 FDR corrected) and group by trial type
interaction (all gs > 0.05 FDR corrected) (Fig. 3),
suggesting that both groups exhibited similar level of
conflict-related modulation on oscillatory theta power.

Multiscale entropy analysis of EEG

As illustrated in Fig. 4, conflict-induced modulation of
MSE values was found for each group at the Pz site,
with greater sample entropy being seen for incongruent
trials relative to congruent trials at time scales 4-25 in
interceptive sport players (all gs < 0.05 FDR corrected)
and at time scales 913, 14-25 in static sport players
(all gs < 0.05 FDR corrected). For the FCz site, the trial
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Mean RT. The correlation analysis
revealed that interference score of
mean RT was not correlated with
N2d (r= -0.23, p = .192), P3d
(r = -0.13, p = .4A71),
interference scores of theta power
at any time—frequency bins (all
gs > 0.05, FDR corrected), and
interference scores of MSE at any

Interceptive sport  Static sport

Fig. 1. Mean RT and RT coefficient of variation (cvRT) for each condition, split by group. The plots
show the distributions (violin) of mean RT and cvRT together with the median (box central black dot),
mean (box central line), first and third quartile (box edges), minimum and maximum (whiskers), and
outliers (red dots). (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

Interceptive sport

=== Static sport

Fig. 2. Grand average ERP waveforms for the N2d and P3d
components in both interceptive sport players and static sport players
at FCz site. The yellow region indicates the mean amplitudes
extracted for analysis. No group-level difference was observed for
the mean amplitudes of N2d as well as P3d.

type effect was observed at time scales 15, 17-25 for the
interceptive sport players (all gs < 0.05 FDR corrected),
whereas such effect was not observed for the static
sport players (all gs > 0.05 FDR corrected). No
differences across all time scales, electrodes, and trial
types were found between groups (all gs > 0.05 FDR
corrected). No effects were observed at the Oz site (all
gs > 0.05 FDR corrected).

Interceptive sport

time scales (all gs > 0.05, FDR
corrected). Such effect was
similar when examining each
group as well as all participants.
cvRT. The correlation analysis
revealed that interference score of
cvRT was not correlated with N2d
(r = 0.276, p = .115), P3d
(r=0.315, p = .070),
interference scores of theta power at any time—
frequency bins (all gs > 0.05, FDR corrected), and
interference scores of MSE at any time scales (all
gs > 0.05, FDR corrected). Such effect was similar
when examining each group as well as all participants.

Static sport

DISCUSSION

In this study, we used a multiscale entropy analysis of
EEG to explore the potential neural mechanisms
underlying individual differences in  cognitive
performance related to expertise in sports. Behavioral
data revealed that, in comparison to static sport players,
interceptive sport players exhibited faster response and
greater stability. For the EEG data, although the two
groups exhibited similar patterns on mean EEG
activities during conflict processing, the task-related
modulation of the midfrontal sample entropy at coarser-
grained time scales was only observed for the
interceptive sport players. These findings may help
further understand the neural mechanisms underlying
individual differences in cognitive ability, especially in
the context of motor expertise.

Within-group Between-group Interaction
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Fig. 3. Time-frequency analysis of the two-way mixed-design analysis of variance (ANOVA) at midfrontal site (FCz). The results revealed that the
main effect of the within group factor (congruent vs. incongruent) was most evident around the theta band (4-7 Hz) following the stimulus onset
(gs < 0.05, FDR corrected). However, the main effects of between group factor (interceptive sport vs. static sport) and interaction did not reach the
significance level (gs > 0.05, FDR corrected), suggesting that both groups exhibited similar levels of conflict-related modulation on midfrontal theta

oscillation. Note: the white dotted line denotes the onset of stimuli.



274
FCz
=
S
o 1
4 5
el O
0.5 0.5
<l £
=1 >
c
= 0 ! 0
0 5 10 15 20 25 0 5
. _
E g 1 1
Q.
7l &
Y o
30'5 0.5
d ;
% 5 10 15 20 25 0o 5

Scale Factor

10

P

10
Scale Factor

C.-H. Wang et al. | Neuroscience 425 (2020) 267-279

Pz Oz
gasesss
1
0.5 —@—  Congruent
—¢—  Incongruent
15 20 25 % 5 10 15 20 25

st

0.5

15 20 25 % 5 10 15

Scale Factor

20 25

Fig. 4. Conflict-induced differences in EEG-based multiscale entropy (m = 1, r = 0.35) at FCz, Pz, & Oz electrodes for interceptive sport players
and static sport players. The yellow region depicts significant effects for contrasts between congruent and incongruent trials (gs < 0.05, FDR
corrected). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Behavioral performance. As expected from previous
studies using the flanker task (Wang et al., 2017; Wu
et al., 2011), both groups exhibited faster and less vari-
able responses in congruent trials than in incongruent tri-
als, which may be attributed to conflict in the form of
competition between correct and incorrect responses on
the incongruent trials.

The group comparison revealed significantly faster
response and smaller trial-to-trial variability for
interceptive sport players, in line with numerous prior
studies showing superior cognitive performance in
athletes practicing open-skill sports than those engaging
in close-skill sports (Di Russo et al., 2010; Krenn et al.,
2018). Given that these differences were observed in
the absence of differences in education, physical fitness,
years of training experience, or mental status at the time
of this study, our results suggest differences in the cogni-
tive characteristics of motor experts practicing different
sport types. More specifically, these findings also shed
light on the differences in cognitive requirements between
interceptive sports and static sports, which might result in
cognitive adaptation to different extends or in different
ways, specific to sports demand. Moreover, given the
association of intra-individual response variability with
the efficiency of top-down processing (Nakata et al.,
2012), it is perhaps not surprising to observe greater
response stability for interceptive sports players—greater
regulation of attentional control may be frequently needed
during an externally-paced environment, thus showing
better performance in athletes practicing this sport type.

We should note, however, that there is a possibility
that innate differences or some combination of innate
differences together with practice result in differences
between athletes drawn to and participating in different
sport types. Although future studies will be necessary to

systematically address this issue, previous research has
shown that sport type has the potential to modulate
training-induced cognitive benefits (Moreau et al., 2015).
In this study, they demonstrated that a complex motor
sport exhibited greater cognitive enhancement than aero-
bic exercise after training for eight weeks, perhaps reflect-
ing the combined benefits of exercise and cognitive
challenges to enhance neuroplasticity (Raichlen and
Alexander 2017; Wang et al., 2019c).

Taken together, the results of this study confirmed and
extended the findings of earlier studies measuring mean
level performance (Voss et al.,, 2010; Wang et al,
2013a; Wang et al., 2013b; Yamashiro et al., 2015) by
illustrating differences in behavioral variability between
athletes with different domains of expertise.

Brain signal complexity. This study addressed the
question of whether there is evidence for functional
cortical responses during cognitive processes that could
account for the individual differences associated with
motor expertise. In order to provide a comprehensive
examination of the EEG data, we also analyzed the
time-domain averaging and the simpler measure of EEG
signals,  which helps  provide  complementary
interpretation of MSE results. Our analysis revealed that
both groups showed clear midfrontal N2d, P3d and
theta oscillation when performing the flanker task.
These findings are in line with a number of previous
studies showing an association between typical EEG
patterns and conflict processing (Liu et al., 2011; Nigbur
et al.,, 2012; Nigbur et al., 2011; Tillman and Wiens
2011). However, individual difference in motor expertise
did not modulate these EEG measures. Thus, we specu-
late that these simpler EEG measures might be less
related to the observed group difference in cognitive
control.
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The analysis of MSE in EEG signal at the parietal site
revealed that brain signal variability was higher in the
incongruent trials relative to the congruent trials for both
groups, with such effect expressed from finer to coarser
time scales in interceptive sport players while at coarser
time scales in static sport players. This finding suggests
that both athletic groups exhibited greater entropy in
response to incongruent flankers, and that the neural
dynamics around the parietal site supporting conflict
processing are both local and distributed for the
interceptive sport players, but predominantly distributed
for static sport players. This conflict-related modulation
of MSE may support the involvement of parietal function
in flanker tasks (Bunge et al., 2002; Casey et al., 2000).
For example, one functional imaging study by
Bungeet al. (2002) found greater parietal activation when
the flankers did (i.e., incongruent vs. congruent trials) or
did not impact behavioral responses (i.e., congruent vs.
neutral trials), suggesting that the functional parietal activ-
ity is not specifically linked to selection between compet-
ing responses, but rather reflects the sustained
activation of a representation of possible responses. In
addition, Caseyet al. (2000) has demonstrated that func-
tional brain activity increased in the inferior parietal region
but decreased in the superior parietal region during incon-
gruent trials. The authors argued that the former may be
more associated with broadening of attention outside
the fovea to include the periphery (e.g., flankers),
whereas the latter may be more involved in narrowing
attentional focus (central target). Together, these com-
plex processes in the parietal area might presumably con-
tribute to the modulation of brain signal variability. Yet,
while the incongruent trials manifested overall higher
entropy values than the congruent trials over parietal
area, such patter of activation was not significantly differ-
entially modulated by motor expertise. A possible implica-
tion of this finding is that the expertise-related differences
in cognitive functioning may not be particularly associated
with automatic or bottom-up control of attention. However,
albeit limited, we observed group differences in cogni-
tively modulating sample entropy at some of the finer
scales (i.e., time scales 4-8), possibly because local net-
works in interceptive sport players are more sensitive to
perceptually conflicting flankers relative to those of static
sport players, though this remains to be confirmed by sys-
tematically manipulating the levels of conflicting flankers
(i.e., the size or number of flankers).

In contrast, with respect to MSE of EEG at the
midfrontal site, we observed unique temporal
distributions for each group, when dealing with
congruent versus incongruent ftrials. Interceptive sport
players exhibited greater sample entropy when
processing incongruent as compared with congruent
trials. This difference was primarily expressed at
coarser-grained time scales that were previously shown
to be associated with distributed information integration,
in contrast to the finer time scales representing local
information integration (Grundy et al., 2017; Heisz et al.,
2012). This finding suggests that interceptive sport players
may exhibit greater, distributed information integration for
conflict processing. In contrast, static sport players

showed a similar level of MSE between congruent and
incongruent trials, reflecting that the processing of conflict
in this group was not strong enough to induce changes in
brain signal variability. That is to say, it is presumable that
players practicing an interceptive sport might rely more on
coarser-grained neurophysiological dynamics during con-
flict processing when compared to those practicing a static
sport, and, as a result, showed better cognitive control per-
formance. This is consistent with the idea that open skills
typically require global processing for complex feature
integration in a dynamically changing environment, in con-
trast to relatively local processing in the predictable and
stable environment that occurs in close-skill sports.
Indeed, a number of studies have found differences in cog-
nitive control processes between interceptive sport and
static sport athletes (Bianco et al., 2017; Wang et al,,
2013a; Yamashiro et al., 2015), which may be honed by
long-term participation in open-skill sports requiring
greater adaptability and fast decision-making in response
to external information in an complex environment (Bianco
etal., 2017; Di Russo et al., 2010). Indeed, greater frontal
activation has been previously observed in the compar-
ison of incongruent to congruent trials, but not in the com-
parison of neutral to congruent trials (Bunge et al., 2002),
likely reflecting that frontal activity is specifically activated
during incongruent trials to select between competing
responses (Bunge et al., 2002; Casey et al., 2000). In line
with this idea, our results suggest expertise-related differ-
ences in top-down attentional processing, and provides
complementary evidence with EEG variability measures.
It is worth pointing out, however, that the current data
showed similar modulation of conflict-related EEG from
simpler measures (i.e., theta power oscillations) in both
athletic groups. Yet, brain signal variability measured by
MSE does not necessarily coincide with EEG power oscil-
lations in response to information processing (Hutka et al.,
2016). Collectively, MSE may be a sensitive tool for
detecting more subtle individual differences in neural
dynamics underlying cognitive functioning.

Moreover, given the association between brain signal
variability and efficiency switching between multiple
functional brain states (Beharelle et al., 2012; Deco
etal., 2011; Grundy et al., 2017), there is another possible
interpretation for the data reported here. One recent study
has found that bilinguals elicit greater brain signal com-
plexity relative to monolinguals when performing a task-
switching paradigm, suggesting that a lifetime of experi-
ence with proficiently switching between two (or more)
languages leads to a more efficient alternation between
functional brain states when processing a domain-
general cognitive task. Similarly, athletes in interceptive
sports are typically bombarded with information that can
either be task-relevant or distracting (e.g., feints). These
impact decision-making processes; specifically, when
reacting to the feints of an opponent, a player may need
to switch rapidly from a planned but inappropriate action
to a new, more appropriate response. This process
places considerable mental demands on the cognitive
control system (Wang et al., 2013a), potentially leading
to more efficient switching brain states over time. Argu-
ably, this itself would result in greater brain signal variabil-
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ity when processing incongruent trials, in comparison to
congruent trials. Importantly, these novel MSE findings
should be considered with caution given that we did not
observe any significant correlations between MSE and
behavioral observations. Future studies are required to
replicate these findings and to explore their generalizabil-
ity to other cognitive domains or athletic populations.

Finally, we did not observe significant differences in
occipital MSE between groups across all time scales.
Therefore, our results indicate that the MSE within the
occipital region is not related to differential cognitive
control processing between groups. In line with this,
MSE differences with regard to congruency level were
not detectable, which might be due to the fact that the
cognitive control task used in this study does not
primarily rely on fundamental visual functioning, but
rather on top-down and bottom-up attentional control
dominated by the frontoparietal network. This suggests
that brain signal complexity elicited by basic visual
processing does not explain superior cognitive control in
athletes practicing an interceptive sport. Nevertheless, it
remains possible that future studies using cognitive
tasks demanding basic visual processing (Overney
et al., 2008) could provide further insight into the modula-
tion on brain signal variability associated with visual pro-
cesses, in relation to expert behavior in sports.

Our study also has a number of potential limitations.
First, the use of a relatively small sample size may limit
the generalizability of the present findings. For example,
the extent to which the cognitive modulation of MSE
seen can be generalized to other types of open-skill
sports (e.g., strategy sports such as soccer or
volleyball), to different expertise levels, to different
training volume, or to female athletes remains to be
determined. A larger and broader athletic population is
thus warranted to allow extrapolating those claims.
Second, the current study was a cross-sectional design,
thus limiting any causal interpretation from the
behavioral and MSE observations, and hindering our
ability to assess the predictive power of MSE with
respect to long-term training-induced cognitive
adaptation. This could be overcome with a longitudinal
study to specifically investigate whether sustained
participation in a specific sport actually induces changes
in brain signal variability inherent in the neural
dynamics. In addition, as the temporal dynamics of task
performance may reflect sustained attention and
cognitive stability over time. However, the present study
does not allow for the investigation of whether the
individual differences associated with sport expertise is
related to lapses in attention. A new specially designed
version of the flanker task with a long block lengths
design would allow for the study of this relationship in
the future. Finally, given the relationship between
knowledge representation and brain signal variability
(Heisz et al., 2012), it would be of interest to further
address the current issue in more ecologically valid condi-
tions using mobile EEG systems (Wang et al., 2019a),
which may help understand whether sport-specific knowl-
edge can induce changes in MSE that may be related to
real-world sports performance.

In sum, the present study suggests that the cognitive
differences related to motor expertise are associated with
different information processing capacities supporting
cognitive functioning. Specifically, we found that
interceptive sport players and static sport players
exhibited different patterns of variability in brain signal
during conflict processing, suggesting that they may use
different networks for processing conflicting stimulus
information. This finding further corroborates the idea of
experience-dependent plasticity in sports, and is in line
with the claim that greater exposure to the type of
cognitive challenges involved in sports can transfer
outside of sport, and result in improvements on domain-
general cognitive control (Alves et al., 2013; Wang
et al., 2015; Wang et al., 2017; Wylie et al., 2018). The
current findings provide additional evidence documenting
training-induced cognitive adaptation, by highlighting the
role of neural complexity in differentiating cognitive func-
tioning between athletes practicing different domains of
expertise. Together with far transfer as postulated in the
cognitive skill hypothesis (Alves et al., 2013; Voss et al.,
2010), increased brain signal variability may underlie the
improved ability to switch between functional brain states.
Thus, brain signal variability could represent a proxy into
enhanced information processing capacity, a plausible
neural mechanism by which cognitive control optimizes
behavioral performance in open-skill sport players.
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