
ASSOCIATION FOR
PSYCHOLOGICAL SCIENCE

Creative Commons NonCommercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0
License (https://creativecommons.org/licenses/by-nc/4.0/), which permits noncommercial use, reproduction, and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

https://doi.org/10.1177/25152459211017853

Advances in Methods and
Practices in Psychological Science
April-June 2021, Vol. 4, No. 2,
pp. 1 –18
© The Author(s) 2021
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/25152459211017853
www.psychologicalscience.org/AMPPS

Tutorial

Together with preregistration, one of the primary solu-
tions to address the replication crisis in psychology has
been to encourage open data and materials (Levenstein
& Lyle, 2018). Facilitated by the rise of open-source
programming languages (R, Python), free repositories
(e.g., OSF, GitHub), and incentive journal policies (e.g.,
open science badges; Kidwell et al., 2016), the field of
psychology has made important progress toward repro-
ducible results in recent years. These incentives enable
stronger foundations for future research—as of early
2019, about 35% of faculty researchers in psychology
embrace open science practices compared with a mere
5% just 5 years earlier (Nosek, 2019). Yet, although nec-
essary, sharing data and materials remains insufficient
to fully ensure reproducible results (Epskamp, 2019)
because results can differ significantly depending on
software versions or operating systems (Glatard et al.,
2015; Gronenschild et al., 2012). To alleviate these prob-
lems, it has been suggested that software version num-
bers and details about computing environments (e.g.,
operating system) should be included in the methods of

scientific articles. However, obtaining previous software
versions can be cumbersome, especially if the software
is proprietary or relies on system dependencies (other
software installed on the computer that the current soft-
ware needs to work) of a specific operating system that
might not be at one’s disposal.

More effective solutions have been proposed. For
example, the package renv (Ushey, 2021), superseding
packrat (Ushey et al., 2018), manages dependencies in
R (R Core Team, 2020) by storing the source code of all
R packages used in a project. These can then be recom-
piled for later use, which ensures consistency in R pack-
age versions across users. However, this approach does
not handle system dependencies or dependencies of
other programming languages and software packages.
For example, the package rJava (Urbanek, 2020) needs

1017853 AMPXXX10.1177/25152459211017853Wiebels, MoreauContainers for Reproducible Science
research-article2021

Corresponding Author:
David Moreau, School of Psychology and Centre for Brain Research,
University of Auckland, Auckland, New Zealand
E-mail: d.moreau@auckland.ac.nz

Leveraging Containers for Reproducible
Psychological Research

Kristina Wiebels and David Moreau
School of Psychology and Centre for Brain Research, University of Auckland, Auckland,
New Zealand

Abstract
Containers have become increasingly popular in computing and software engineering and are gaining traction in scientific
research. They allow packaging up all code and dependencies to ensure that analyses run reliably across a range of
operating systems and software versions. Despite being a crucial component for reproducible science, containerization
has yet to become mainstream in psychology. In this tutorial, we describe the logic behind containers, what they are,
and the practical problems they can solve. We walk the reader through the implementation of containerization within a
research workflow with examples using Docker and R. Specifically, we describe how to use existing containers, build
personalized containers, and share containers alongside publications. We provide a worked example that includes all
steps required to set up a container for a research project and can easily be adapted and extended. We conclude with
a discussion of the possibilities afforded by the large-scale adoption of containerization, especially in the context of
cumulative, open science, toward a more efficient and inclusive research ecosystem.

Keywords
reproducibility, containerization, replication, software, research workflow, open materials

Received 10/28/20; Revision accepted 4/14/21

https://us.sagepub.com/en-us/journals-permissions
https://www.psychologicalscience.org/AMPPS
http://crossmark.crossref.org/dialog/?doi=10.1177%2F25152459211017853&domain=pdf&date_stamp=2021-06-08

2 Wiebels, Moreau

a specific Java version to be installed on the computer;
it is therefore possible that rJava works for a given user
but not another—even if the project is managed by renv
and operating systems are identical.

Ideally, we want to “package up” (isolate) our whole
computing environment in a way that anybody on any
computer can examine and replicate our work, indepen-
dently of installed software, drivers, and operating sys-
tems (see Fig. 1). A popular way to achieve this goal is
with virtual machines (VMs). A VM is a computer pro-
gram that creates a virtual computer running inside the
physical computer with its own operating system, soft-
ware, and files. Using VMs, all software and their system
dependencies (and sometimes scripts and/or data) used
for a particular project can be bundled up and then
shared with others. Yet VMs can get very large and slow,
which can make sharing and using them impractical.

An alternative approach that has gained traction
recently is containerization. Containers also isolate com-
puting environments but use fewer resources than VMs.
Containers are thus a lightweight alternative to VMs that
make more efficient use of the underlying computing
system and can more easily be shared. Originally mainly
used in computer science as a way to develop and test
applications in an isolated environment, containers have
recently been adopted for scientific computing (Boettiger,

2015). Containerization in this context is a way to not
only support reproducibility once a project is completed
but also to facilitate working efficiently and collabora-
tively while the project is ongoing, by ensuring every-
thing related to a research project runs smoothly and
identically across all computers used across the life span
of a project independently of collaborators’ individual
setups.

Despite the advantages of containers and their preva-
lent use in fields such as computing, software engineer-
ing, and, more recently, neuroscience, containerization
remains rarely used in psychology, perhaps because of
a lack of awareness or because using—and especially
building—containers can seem daunting for those of us
lacking a computer science background. This tutorial
aims to remove this barrier and demystify containeriza-
tion by providing a step-by-step guide to using, building,
and sharing containers within a research workflow. We
use the container platform Docker and focus on the R
language. After some background information on
Docker, we provide an overview of basic Docker com-
mands and of how to run R in Docker containers (Tuto-
rial Part I: Docker Basics and the Rocker Project). In the
section Tutorial Part II: Building and Sharing Personal-
ized Docker Containers, we provide a step-by-step
worked example of building, using, and sharing a

examplR
package

version 1.0
on Linux

examplR
package

version 1.0
on Windows

examplR
package

version 0.9
on macOS

examplR
package

version 1.0
on macOS

examplR
package

version 1.1
on macOS

Compatibility
across versions

Co
m

pa
tib

ili
ty

ac
ro

ss
 s

ys
te

m
s

Fig. 1. Two dimensions of compatibility enabled by containerization. Compatibility across
systems relates to differences in system dependencies within or across operating systems;
here, we chose to depict an example of compatibility across operating systems. Compatibility
across versions relates to differences between software releases.

Containers for Reproducible Science 3

personalized container for a research project. This
worked example includes all required steps from start
to finish and is designed to be easily adoptable and
extendable by readers. We conclude with a brief sum-
mary of the tutorial and an overview of more advanced
containerization workflows.

Brief Introduction to Docker

Docker (docker.com; Merkel, 2014) is an open-source
containerization project based on Linux; that is, Linux
is running inside the containers even though we might
be on a Windows or Mac computer. Docker consists of
three components: the Docker software, Docker objects,
and an online Docker registry (see figure in Box 1). The
Docker software consists of the Docker client and the
Docker daemon. The Docker client is a command-line
tool that you use to tell Docker what you want to do.
When you type a command, the Docker client talks to

the Docker daemon in the background, which then does
all the work, such as building, running, and distributing
containers. In our case, the Docker client and the Docker
daemon are both on our computer, but it is possible to
connect a Docker client to a remote Docker daemon.

The main Docker objects are Docker images and
Docker containers. A Docker image is a read-only,
unmodifiable blueprint of the desired computing envi-
ronment. The image contains all instructions to create
the computing environment and can be shared if others
want to use the same environment. From the image,
Docker can create a container—a runnable version
(instance) of the image, that is, the actual computing
environment that can be used to run applications or
conduct analyses. An unlimited number of containers
can be created from one image, and, in contrast to
images, containers can be modified while running. These
changes, however, are not saved back into the image.
This desirable property means that each time a container

Box 1. Glossary of Docker Terminology

Docker engine: The containerization technology that Docker uses. The Docker engine manages containers,
images, builds, and so on. It consists of the Docker daemon running on the computer and the Docker client
that communicates with the daemon to execute commands.
Docker client: The command line tool that allows the user to interact with the Docker daemon.
Docker daemon: The background service running on the computer that manages Docker objects and pro-
cesses, such as building, running, and distributing containers.
Dockerfile: A file containing the instructions to build a Docker image. Once the Dockerfile is set up, the
docker build command can be used to build a docker image from the Dockerfile.
Docker image: The blueprint of a Docker container. Contains instructions for creating a container and defin-
ing the content, its dependencies, and the startup behavior. The docker run command creates a Docker
container from the Docker image.
Docker container: A runnable instance of a Docker image. Docker containers can be created (docker
run), stopped (docker stop), restarted (docker start), deleted (docker rm), or connected to storage
(using the -v flag). The same container can be created and run in any environment.
Docker Hub: Registry for Docker images. Docker images can be downloaded (using docker pull) and
shared (using docker push) for free on Docker Hub.
Docker ID: Username on Docker Hub.
Volumes: Used to manage data inside containers. By default, data created in a container do not persist when
a container is removed. Volumes are used to give the container access to files on the computer (e.g., scripts or
data) and can also be used to save files to the computer. Volumes are initialized when a container is created
by using the -v flag in the docker run command.

Docker Client Docker Host

Docker Daemon Images

ImagesContainers

Docker Hub

docker build

docker pull

docker run

docker push Volumes
...

...

4 Wiebels, Moreau

is run from a particular image, it is exactly the same;
you cannot “break” the image, no matter what you do
in the container. If you want changes you made in the
container to be saved, you need to create a new image
that incorporates these changes. You can think of a
Docker image as a cake recipe and the corresponding
Docker container as a finished cake. The recipe contains
the instructions to make the cake, it can be used to make
as many cakes as you like, and it can be shared to enable
others to make the same cake. Everyone using the recipe
ends up with the same kind of cake, which can then be
modified by adding, for instance, icing or sprinkles.
However, your addition of icing and my addition of
sprinkles will not change the recipe, and the next time
we use the recipe, we get the same reproducible cake
as before.

Finally, the third Docker component is an online
repository of Docker images called Docker Hub, from
which existing images can be downloaded and to which
you can upload your own images if you want to share
them. We illustrate all these concepts in practice through-
out the tutorial, which will further clarify them. Box 1
contains additional details about the Docker architecture
and definitions of Docker-related terms.

Even though other containerization platforms exist,
such as CodeOcean (described in detail in Clyburne-
Sherin et al., 2019) and Singularity (sylabs.io), we chose
to use Docker for this tutorial for five main reasons. First,
Docker is one of the leading container platforms and has
been established as best practice in several research fields
(Boettiger, 2015). Second, Docker runs on all major oper-
ating systems (Linux, macOS, and Windows). Third,
Docker containers are easy to use, very lightweight, and
fast. Fourth, Docker images can be stored and shared for
free on the central registry Docker Hub. Finally, and
thanks to its growing popularity, Docker benefits from a
large user community and a rich ecosystem of related
tools, such as Rocker (rocker-project.org; Boettiger &
Eddelbuettel, 2017), which provides containers with R
environments, and Neurodocker (github.com/ReproNim/
neurodocker), which facilitates setting up customized
containers for neuroimaging projects. Familiarity with
Docker is also helpful because major tools in neighboring
fields have moved to using the Docker format, such as
the standardized functional MRI preprocessing pipeline
fmriprep (fmriprep.org; Esteban et al., 2019). In psychol-
ogy, similar trends are emerging with projects like the
Experiment Factory, which allows creating Docker con-
tainers to ensure behavioral experiments can run smoothly
across platforms (expfactory.github.io; Sochat, 2018).

Disclosures

All materials (Dockerfiles, data, scripts) used in this tuto-
rial are available at osf.io/z85k3; the corresponding

Docker images can be found at hub.docker.com/u/
kwiebels. A wiki with commonly encountered Docker
errors is also available at osf.io/z85k3. We designed this
tutorial to be accessible for novices, but we do assume
basic knowledge of computers (e.g., knowledge of terms
such as path). If you want to learn more about basic
command-line usage, see the Software Carpentry lesson
on the Unix shell (swcarpentry.github.io/shell-novice).
For the interested reader wanting to go beyond the mate-
rial covered in this tutorial, a comprehensive general
Docker guide can be found at docker-curriculum.com.

Tutorial Part I: Docker Basics and the
Rocker Project

Preparations

Before starting the tutorial, go to osf.io/z85k3 and down-
load the folder tutorial_project to a chosen loca-
tion on your computer. Make a note of where you saved
this folder because you will need the path to this location
in the tutorial (for us, the path is /Users/kwiebels,
so the path to the content of the folder is /Users/
kwiebels/tutorial_project). The folder con-
tains two files, an R script called script.R and a csv
file called study2_summaryData.csv, which con-
tains data openly available as part of a published study
by our group (Wiebels et al., 2020).

Installing Docker

Docker is available for a variety of Linux distributions,
for Mac, and for Windows. On Linux, you will install
Docker directly; if you are on Mac or Windows, Docker
is installed through Docker Desktop, an application that
includes all features needed to build and share contain-
ers. To download and install Docker, follow the detailed
instructions listed at docs.docker.com/get-docker in the
section for your operating system. If you are using Win-
dows, see Box 2 for Windows-specific considerations.

Running Docker containers

Once Docker is installed, it is time to launch it! You
should see the Docker icon in the taskbar, indicating
that Docker is running. Docker is then accessible from
the terminal (on Mac, open the terminal by opening the
Applications folder, then opening Utilities and double-
clicking on Terminal; on Windows, open the PowerShell
by clicking Start, typing PowerShell, and then clicking
Windows PowerShell). Once a terminal window is open,
you can type commands and execute them using the
return/enter key.

The general syntax for running a Docker container is:

http://github.com/ReproNim/neurodocker
http://github.com/ReproNim/neurodocker
http://fmriprep.org
http://osf.io/z85k3
http://hub.docker.com/u/kwiebels
http://hub.docker.com/u/kwiebels
http://osf.io/z85k3
http://swcarpentry.github.io/shell-novice
http://docs.docker.com/get-docker

Containers for Reproducible Science 5

docker run [OPTIONS] IMAGE[:TAG]
[COMMAND] [ARG. . .]

An IMAGE, from which the container is derived, must
be specified; the rest of the terms are optional. OPTIONS
can be used to constrain the container’s behavior; we

describe a range of them throughout the tutorial. The
TAG instructs Docker to use a specific version of an
image, and finally, the COMMAND tells Docker which
command to execute when the container starts. Most
of the time, the Docker image developer specifies this
start-up behavior (e.g., a typical command of an R

Box 2. Windows-Specific Considerations

Installation
There are two ways to run Docker on Windows, either using the Hyper-V backend or using the Windows Sub-
system for Linux (WSL) 2 backend (available for Windows 10 Version 1903 or higher). WSL is a full Linux ker-
nel built by Microsoft and allows Docker containers to run natively without the need for emulation. Using the
WSL 2 backend is recommended because it makes more efficient use of resources and greatly increases speed.
If possible on your system, Docker will automatically select this option during the installation process (see
screenshot of the Docker settings below, “Use the WSL 2 based engine” tick box). Depending on the computer
setup, the WSL 2 feature on Windows might need to be enabled and the Linux kernel update package installed.
Docker Desktop will alert you to this if these steps are necessary, in which case you can follow Steps 1 through
5 at docs.microsoft.com/en-us/windows/wsl/install-win10 (for further details about the WSL 2 backend, see
docs.docker.com/docker-for-windows/wsl). Older versions of Windows will automatically use the Hyper-V
backend (i.e., the box in the screenshot will be unticked), for which no additional steps are required.

Usage
We recommend using the Windows PowerShell. If you are using WSL 2 and prefer the WSL 2 bash terminal,
you will need to prepend all commands with ‘sudo.’

Paths
Paths in Windows are different from the ones on Linux and Mac (which is used in this tutorial), so you will
need to adapt the paths slightly. If your path is C:\Users\kwiebels\tutorial_project, for example,
you need to change it to /c/Users/kwiebels/tutorial_project. If you are using the WSL 2 bash ter-
minal, the path needs to be changed to /mnt/c/Users/kwiebels/tutorial_project.

6 Wiebels, Moreau

container is simply to start R), but it can be overridden,
for example to get the R version instead of starting R
(R --version) or to run an R script that reproduces
all analyses used in an article (e.g., Rscript
run_all.R).

To test your Docker installation, open a terminal win-
dow and run the line below:

type this in the terminal

docker run hello-world

If your installation works correctly, you should see
the text output shown in Figure 2.

If you see this output, you just ran your first Docker
container! The container is called hello-world and is
not overly useful—it does not do anything beyond print-
ing text. The image from which the container was created
is stored on—and was downloaded from—Docker Hub
(you can look at the hello-world Docker image
online at hub.docker.com/_/hello-world). docker run
automatically downloads (pulls) Docker images from
Docker Hub if they cannot be found locally (i.e., on your
computer). You can also explicitly do this by running
docker pull hello-world (which pulls the image

from Docker Hub) before docker run hello-world
(which creates a container from the image and runs it).

Once you have downloaded a Docker image, you can
run

type this in the terminal

docker images

to get a list of Docker images available on your com-
puter. You will see the hello-world image along with
a tag (version), the ID of the image, and its creation date
and size (see Fig. 3).

In addition to a list of images, you can also get a list
of all containers on your computer using

type this in the terminal

docker ps -a

The -a flag means that all containers will be dis-
played, independent of their status (a flag is an option
appended to a command; for a list of all available flags
for docker ps, type docker ps --help or check
the documentation online at docs.docker.com/engine/

Fig. 3. Screenshot of the docker images command output.

Fig. 2. Screenshot of the hello-world container output.

http://docs.docker.com/engine/reference/commandline/ps

Containers for Reproducible Science 7

reference/commandline/ps). You should see a list of all
containers you have created so far as well as additional
information about each container—including the con-
tainer ID, the name of the corresponding image, and the
container’s status (see Fig. 4).

The container’s status indicates for how long the con-
tainer has been running or how long ago it was stopped
(exited). Some containers stop automatically (as was the
case with the hello-world container), but some have to
be stopped manually.

By default, after a container is stopped, it is not
removed from the computer, and every time you use
docker run, a new container is created. This means
that if you run docker run hello-world again,
you will end up with two hello-world containers on
your computer. Keeping all created containers on your
computer unnecessarily takes up disk space given that
we typically create a new container for each use to start
with the same clean environment. The only thing we
need to keep is the image, from which a new container
can be created any time. To remove an existing container,
use the following command, replacing <container_
ID> with the container ID from the docker ps -a
output (e.g., 796e9ec1e334 for the hello-world
container in our case):

type this in the terminal

docker rm <container_id>

Note that you can copy and paste the container ID
instead of having to write it out manually (in the terminal
on Mac, copying and pasting works as usual; in the
Windows PowerShell, highlight what you want to copy
and use right click to paste). To remove all containers
from your computer at once, the shortcut docker rm
$(docker ps -a -q) can be used (see Box 3 for a
list of other useful Docker commands).

To avoid having to manually remove containers, it is
possible to specify at the time a container is created that
the container should be removed automatically after it
is stopped. This is achieved with the --rm flag:

type this in the terminal

docker run --rm hello-world

This time, the container was automatically removed
from the computer after exiting. Note that if you use
Docker Desktop, you can also start, stop, and remove
containers and images in the Docker Desktop interface.

Fig. 4. Screenshot of the docker ps -a command output.

docker pull <image_name> downloads an image from DockerHub.
docker run <image_name> runs a container.
docker run -it <image_name> runs a container interactively.
docker run --rm -it <image_name> is the same as above but causes the container to be removed

after it has been stopped.
docker run --rm -it -v <path_on_computer>:<path_in_container> <image_name> addi-

tionally mounts a local folder into the Docker container (in this case, <path_on_computer> is mounted
into the container and is accessible in the container under <path_in_container>).

docker exec -it <container_id> bash opens a terminal inside a running Docker container (e.g., to
install additional libraries in a container that is already running).

docker build -t <image_name> . builds a Docker image called <image_name> in the current folder.
docker images or docker image ls returns a list of all Docker images stored on the computer.
docker ps or docker container ls returns a list of currently running containers.
docker ps -a returns a list of currently running and stopped containers (i.e., all created containers).
docker stop <container_ID> stops a running container.
docker start <container_ID> restarts a stopped container.
docker rm <container_ID> removes a stopped container.
docker rm $(docker ps -a -q) is a shortcut to remove all stopped containers.
docker rmi <image_ID> removes an image.
docker rmi $(docker images -a -q) is a shortcut to remove all images.

Box 3. Glossary of Common Docker Commands

http://docs.docker.com/engine/reference/commandline/ps

8 Wiebels, Moreau

The Rocker project

Thanks to the Rocker project (rocker-project.org), run-
ning R inside a Docker container is just as easy. Rocker
maintains Docker images with R or RStudio preinstalled,
which means that we do not have to create R Docker
images from scratch. There are different images suited
for different needs (see all images at hub.docker.com/u/
rocker). Some images only include R or RStudio, whereas
others already have some R packages preinstalled, for
example the rocker/tidyverse image, which
includes the tidyverse (Wickham, 2017), devtools
(Wickham & Chang, 2016), and remotes (Hester et al.,
2019) packages, or rocker/ml, which includes com-
mon machine learning packages.

Rocker base R containers. To run a container with a
base R environment, simply type the line below:

type this in the terminal

docker run --rm rocker/r-ver

rocker/r-ver here refers to the image r-ver in
the repository of the Docker Hub user rocker. In the
terminal, you should see R start, but then exit again
straight away. This happens because to interact with R,
you need to use the -it flag. The -it flag lets you
interact with the R console in the terminal; that is, you
can use the keyboard to provide inputs, and outputs are
returned to the terminal. Change the above command to

type this in the terminal

docker run --rm -it rocker/r-ver

An interactive R session is now running in Docker
(see Fig. 5), and you can use R as you usually would.
For example, typing mean(c(2,4)) will return 3.
When you are done, type q() to quit the R session, stop
the container, and get back to the terminal.

By default, Docker pulls and runs the latest version
of an image from Docker Hub. At the time of writing,
the latest Rocker image uses R version 4.0.4 (see Fig. 5).
When Docker is used for reproducibility reasons, a ver-
sioned—instead of the latest—image should be used to
ensure that everyone using the container will get the
same R version independently of when the container is
created. To use a specific R version, tags can be speci-
fied. To use R version 3.6.1, for instance, the previous
command needs to be adapted as follows:

type this in the terminal

docker run --rm -it rocker/r-ver:3.6.1

Rocker RStudio containers. Rocker also maintains
RStudio images, which might provide a more comfortable
analysis environment than accessing R through the com-
mand line. These containers run an instance of RStudio
server, which can be accessed from—and interacted with—
a web browser. As with the base R container, you can choose
the R version you want to use. Running the following com-
mand will start an RStudio container with R version 3.6.1
(note that the command has to be written on one line):

type this in the terminal

docker run --rm -d -e PASSWORD=my_
password -p 8787:8787 rocker/
rstudio:3.6.1

Fig. 5. Screenshot of an interactive base R session in Docker running in the terminal.

Containers for Reproducible Science 9

There are three additional flags this time. The -d
flag means that the container will run in the back-
ground (detached) so that the terminal can still be used
for other commands. The RStudio server instance needs
a username (rstudio by default) and a password, set
using the environment variable PASSWORD with
-e PASSWORD=my_password. We have chosen my_
password for this example, but this can be changed to
any password you want. -p 8787:8787 maps a port

from inside the container to the computer (in the form
of -p <port_computer>:<port_container>).
A port enables communication between the computer
and anything connected to the Internet, in this case the
RStudio server. To enable the connection to RStudio
server, RStudio is assigned a port number inside the
container. Given that the container is isolated from the
rest of your computer, this port number needs to be
passed from inside the container to the computer so
that RStudio can be accessed from a Web browser out-
side the container.

After typing the command, Docker will print the con-
tainer ID to the terminal. To use the containerized RStu-
dio, open a browser window and enter localhost:8787
as the URL. You will be redirected to a login page (see
Fig. 6) and prompted to enter the username (rstudio)
and the password you set (my_password unless you
changed it).

Upon login, you will be running RStudio in the
browser (see Fig. 7). This RStudio instance can be used
just like RStudio running locally on your computer. To
quit the session, click the red button on the top right
and close the browser tab.

When you are done, you need to stop the Docker
container manually in the terminal because it will still
be running in the background (because of the -d flag
in the initial docker run command). Get the container
ID with docker ps -a and type the following com-
mand, replacing <container_ID> with the ID of the
RStudio container:

Fig. 6. Screenshot of the RStudio server login screen.

Fig. 7. Screenshot of an RStudio session running in Docker.

10 Wiebels, Moreau

type this in the terminal

docker stop <container_ID>

Once stopped, the container is automatically removed
because we used the --rm flag in our initial command.
You can confirm this using docker ps -a.

Accessing files in Docker containers

By default, Docker does not have access to any files on
the computer; however, we might want to load a local
data set or write results to a specified folder on the com-
puter. To give access to a local folder, the -v (volume)
flag is used in the docker run command along with
details about which folder on your computer you want
to access and the location inside the container at which
you want the folder to be available (the format for this is
<path_on_computer>:<path_in_container>).

The command below will map the folder at <path_
on_computer> to the path /home/rstudio inside
the Docker container (/home/rstudio is the default
working directory inside RStudio Rocker containers, so
this is the folder in which you land when you open
RStudio). Replace <path_on_computer> with the
path to the folder on your computer that you down-
loaded for this tutorial (e.g., /Users/kwiebels/
tutorial_project). If you are using Windows, you
will need to adapt the path slightly to make it work in
the Linux environment inside the container (see Box 2):

type this in the terminal

docker run --rm -d -e PASSWORD=my_
password -p 8787:8787 -v <path_on_
computer>:/home/rstudio rocker/
rstudio:3.6.1

After running the command, open RStudio in the
browser, as before. You should now see the content of
the folder in the RStudio Files tab (see Fig. 8). Remember

to stop the container when you are done using docker
stop <container_ID>.

If your research project does not require packages
beyond the ones provided by Rocker, you can use one
of the Rocker images without any modifications. If you
need additional packages—which will likely be the
case—it is possible to install them in RStudio while the
container is running. The problem with this approach,
however, is that the packages need to be reinstalled every
time a new container is created, which also means that
they will not be available automatically for other research-
ers who use your container. To build a personalized
computing environment that can be used and shared with
collaborators and other researchers, you can build your
own Docker image with all required packages. That way,
the packages will automatically be available in each con-
tainer that is created from the image. In the following
section, we provide a worked example of how to create
and use a personalized container and how to share it.
The guide includes all required steps so that it can easily
be adopted and extended for your own research.

Tutorial Part II: Building and Sharing
Personalized Docker Containers

In this section, we aim to provide a step-by-step guide
on how to build, use, and share a personalized container
for your research project. Building a personalized con-
tainer involves several steps but is a straightforward
process, especially if only R is required. In the following
sections, we demonstrate how to (a) build your own
personalized Docker container with RStudio and addi-
tional R packages; (b) load a local data set inside your
personalized container, create summary statistics and a
plot, and write results to a local folder; and (c) make
the container available on Docker Hub or OSF (osf.io).

Building a personalized Docker
container

Building a personalized container involves two main
steps. We first need to write a Dockerfile—a file with a

Fig. 8. Screenshot of an RStudio session with access to a local folder.

Containers for Reproducible Science 11

set of instructions in which we specify everything that
we want to include in the container. This Dockerfile is
then used to build a Docker image, from which we can
then run containers.

For this example, we want to build an RStudio con-
tainer with R version 3.6.1 and use the R packages psych
(Revelle, 2011), ggplot2 (Wickham, 2011), and gghalves
(Tiedemann, 2020) to generate summary statistics and a
plot. As described previously, thanks to the Rocker proj-
ect, we do not need to build our container from scratch,
which would involve installing R on the Linux system
inside the container. Instead, we can simply use a suit-
able Rocker image as a starting point and then add the
packages we need. Given that we need ggplot2, which
takes quite a long time to install, and remotes (Hester
et al., 2019) to install gghalves from GitHub, we will start
with the rocker/tidyverse:3.6.1 image, which
has both packages preinstalled.

To start building your container, open the terminal
and move into the tutorial_project folder (replace
<path_to_folder> with your path):

type this in the terminal

cd <path_to_folder>

You can check that you are in the right location by
typing pwd (print working directory). Next, create a file
called Dockerfile in that folder. This file needs to
have that specific name and must not have an extension,
such as “.txt,” otherwise the building process will fail.
On Linux/Mac, use

type this in the terminal

touch Dockerfile

On Windows, use

type this in the terminal

New-Item -Path . -Name "Dockerfile"

The general format of a Dockerfile is

comment
INSTRUCTION arguments

Instructions do not have to be capitalized, but it is
convention to do so. A Dockerfile must start with a FROM
<image_name> statement that specifies which Docker
image is used as the base image (i.e., which Docker
image will be extended; in our case, the Rocker tidyverse
image). Other common instructions include COPY

(copies files from the computer into the container), ENV
(sets an environment variable), and RUN (runs a com-
mand). See the Dockerfile reference (docs.docker.com/
engine/reference/builder) for a full list. In our example,
we just want to add some R packages, so we only need
the FROM and RUN instructions. Note that although the
COPY instruction can be used to include scripts and data
in the image, it is preferable to load these files into the
container at runtime so that the size of the image does
not increase drastically and sensitive data are not acci-
dentally included in and distributed with the image (for
general advice on writing Dockerfiles, see Nüst et al.,
2020).

For our Docker container, we are going to start with
a versioned Rocker tidyverse image. Open the Dockerfile
using your favorite text editor, and add the following
line:

this is a Dockerfile

use the Rocker tidyverse image to
create an R environment

FROM rocker/tidyverse:3.6.1

After this line, we need to specify which additional R
packages we want to install. Before adding this informa-
tion to the Dockerfile, it is usually a good idea—that can
save a lot of time—to test installing the packages first.
Most packages should install without any issues, but
some packages rely on system libraries that have to be
installed first and will throw an error at first try. These
errors can be challenging to track down if they are
encountered only while building the Docker image. To
test the installations, we run a container of the tidyverse
image and then—instead of opening RStudio—open a
terminal inside the running container. This way, we can
install the packages from the command line to ensure
those commands will work in the Dockerfile.

A running container can be accessed using the
docker exec command, as shown below. First, start
a container of the tidyverse image you specified in the
Dockerfile:

type this in the terminal

docker run --rm -d -e PASSWORD=my_
password -p 8787:8787 rocker/
tidyverse:3.6.1

Use:

type this in the terminal

docker ps -a

http://docs.docker.com/engine/reference/builder
http://docs.docker.com/engine/reference/builder

12 Wiebels, Moreau

to get the ID of the running container and type:

type this in the terminal

docker exec -it <container_ID> bash

Bash is the command language used by the terminal in
this container. The command will open a terminal inside
the container (see Fig. 9). In this case, root is the user,
and 160ed3f1f63c is the ID of the running container.

In the terminal inside the container, you can try out
installing the packages you need. Running

type this in the terminal inside the
container

Rscript -e 'install.packages("psych")'

will use R’s install.packages() function to install
the psych package.1 The -e flag specifies that the input
is an expression that will be evaluated. Given that these
are normal R commands, you can do anything you usu-
ally do, for example, install a certain package version
using the devtools package. The process should finish
without errors. Once the psych package has been
installed, it will become available in the dockerized
RStudio in your browser, and you will be able to load
and use it as usual. The process for gghalves is slightly
different because it is not available on CRAN (The Com-
prehensive R Archive Network) and therefore needs to
be installed from GitHub. Rocker’s helper function
installGithub.r that is available inside the con-
tainer can be used to achieve this:

type this in the terminal inside the
container

installGithub.r erocoar/gghalves

Once those two packages have installed successfully,
you can safely add them to the Dockerfile using RUN
instructions:

this is a Dockerfile

use the Rocker RStudio image for the
R environment

FROM rocker/rstudio:3.6.1

install the psych and gghalves
packages

RUN Rscript -e 'install.
packages("psych")'

RUN installGithub.r erocoar/gghalves

After saving this Dockerfile, exit the terminal inside
the Docker container by typing exit, and stop the
running RStudio container with docker stop <cont
ainer_ID>. It is now time to build the Docker image:

type this in the terminal

docker build -t tutorial_project .

-t lets us specify a name for our Docker image (we
chose tutorial_project here) and optionally a tag (by
default latest is used), and . indicates that the Docker
image should be built in the current folder (this needs
to be specified so that Docker knows where the Dock-
erfile is). If you get an error here, make sure you are in
the right folder in the terminal, otherwise the Dockerfile
will not be found. Depending on your computer, the
building process might take a few minutes. Once the
Docker image is built, we can use it for analyses, which
we show in the next section.

Using the container

Having set up the container, we can now use it to load
a data set, compute summary statistics, create a plot, and
save the output in a folder on the computer. By now,
you are familiar with how to run a container; all that is
needed is to replace the image name with the name you
gave your personalized Docker image. We use the script
and the data you downloaded from OSF, so you need
to give Docker access to the folder that contains these
downloaded files (replace <path_on_computer>
with the path to that folder):

type this in the terminal

docker run --rm -d -e PASSWORD=my_
password -p 8787:8787 -v <path_on_
computer>:/home/rstudio
tutorial_project

You are now running your first personalized con-
tainer! After opening RStudio in the browser, you will

Fig. 9. Screenshot of a bash prompt inside a running container.

Containers for Reproducible Science 13

see the data file (study2_summaryData.csv) and
the R script (script.R). You will also see that the
packages psych, ggplot2, and gghalves are available.

When looking at the script, you will see that it loads
some packages, computes summary statistics using the
psych package, creates a plot using ggplot2 and gghalves,2
and saves the results in a file. Run the script as you
usually would in RStudio, and you will see two new
files being created, descriptives.csv and plot_
difficulty.png. These files are saved in the folder
on your computer that you specified in the command
above (the same folder that contains the script and the
data), which means that you have access to those files
even after stopping and removing the container. Once
you have run the script, you can close RStudio and stop
the container using the docker stop command.

In some situations, you—or others—might just want
to run the container to reproduce and inspect the results
instead of interacting with the data or code inside the
container. In this case, a slightly adapted command can
be used to start the container, run the script, save the
output, and then exit and remove the container:

type this in the terminal

docker run -i --rm -v
<path_on_computer>:/home/rstudio
tutorial_project Rscript -e
"setwd('/home/rstudio');
source('script.R')"

Sharing the container

When you have created and used a personalized con-
tainer for a research project, you might want to share it,
along with the scripts and data, with your collaborators
while the project is ongoing or upon completion of the
project to make your analysis reproducible for other
researchers. Docker containers can be shared either by
uploading the Docker image to Docker Hub so that oth-
ers can download it or by sharing the Dockerfile on a
repository such as OSF so that others can build the cor-
responding Docker image themselves. We demonstrate
both options in the next two sections.

It is good practice to include usage instructions for
the container in the Dockerfile and/or in a README file.
To do this, open the Dockerfile and add the following
information at the bottom of the file:

this is a Dockerfile

Usage instructions

Run the container using:

docker run --rm -d -e PASSWORD=my_
password -p 8787:8787 -v <path_on_
computer>:/home/rstudio
tutorial_project

Reproduce the analyses using:
docker run -i --rm -v <path_on_

computer>:/home/rstudio tutorial_
project Rscript -e 'setwd("/home/
rstudio"); source("script.R")'

The corresponding data and code can
be found at: https://osf.io/z85k3/

Sharing the Docker image on Docker Hub. To share
the image on Docker Hub, you will need to create a free
Docker Hub account. To do this, go to hub.docker.com,
click on “Sign up,” and fill out the information. Once your
account is created, return to the terminal and log in with
your credentials:

type this in the terminal

docker login

For Docker to know to which repository on Docker
Hub to upload your image, you need to tag your image
with your Docker ID (the username you used when
creating the account on Docker Hub) and the image
name in the following format:

docker tag <image_name> <Docker_ID>/
<image_name>

The image name can remain the same. Given the
example above, this would be

type this in the terminal

docker tag tutorial_project <Docker_
ID>/tutorial_project

You can then upload (push) the container to Docker
Hub:

type this in the terminal

docker push <Docker_ID>/tutorial_project

It is important here to use the format <Docker_
ID>/<image_name> so that Docker knows where on
Docker Hub to publish. Once the image is on Docker
Hub, others can easily download and run it using

http://hub.docker.com

14 Wiebels, Moreau

docker run --rm -d -e PASSWORD=my_
password -p 8787:8787 <Docker_ID>/
tutorial_project

Sharing the Dockerfile on OSF. If you prefer sharing
the Dockerfile on OSF, along with any materials or data
you want to share, you can achieve this very easily. If you
have never used OSF before to share project-related files,
follow Soderberg’s (2018) guide. All that is left to do once
the OSF repository is set up is to upload the Dockerfile
into that repository. Others can then download that Dock-
erfile and use the docker build command to build the
corresponding Docker image.

These two approaches can also be combined because
they both have advantages. Sharing the image on Docker
Hub makes it easier for others to download and use it
because they do not need to build the image themselves.
Sharing the Dockerfile itself has the advantage that others
can inspect the file to see exactly what is included and
adapt it for their own purpose if desired. Note that there
is a slightly more advanced way to upload Docker images
to Docker Hub, which will automatically make the Dock-
erfile available as well (see Box 5, Automated Builds
Using GitHub).

Once you have finished the tutorial, you might want
to delete all containers and images we used throughout
because they can take up quite a lot of disk space. Use
the following two commands to achieve this:

type this in the terminal

docker rm $(docker ps -a -q)
docker rmi $(docker images -a -q)

Discussion

In this tutorial, we explained the basics of containeriza-
tion and provided step-by-step guides for building,
using, and sharing Docker containers. The first part of
the tutorial introduced basic Docker commands and the
Rocker project as a way to run R code in containers. In
the second part of the tutorial, we showed how to set
up a personalized container for a research project, from
writing a Dockerfile to sharing the Docker image.

Containerization is an important step toward making
research reproducible by providing a consistent comput-
ing environment that can be used by all collaborators
over the course of a project and that can be shared along
with the publication. Throughout the tutorial, we focused
on the R language, but we provide a resource below for
setting up a Python environment to illustrate the process
for projects that require tools beyond R. We aimed to
provide a resource that can be easily adapted and
extended to one’s own research projects or workflows.

Below, we summarize some Docker uses that are beyond
the scope of this tutorial but might be of interest to some
readers before concluding the tutorial with some general
remarks.

Additional steps

Integrating containerization into the research work-
flow. Sharing a container after a research project has been
finalized ensures that your analyses are reproducible. How-
ever, containerization can also greatly benefit your collabo-
rators—and yourself—throughout the development of the
project by making sure that code does not break over time
and that every collaborator works in exactly the same envi-
ronment without the need to synchronize all pieces of soft-
ware manually. This aspect might be especially beneficial
for collaborators who are not heavily involved in the data
analysis part of the project and need to inspect the results
only from time to time or give feedback.

Figure 10 depicts an example workflow with contain-
ers being used as the computing environment from the
start of a research project. At the beginning of the
project (purple box), a shared location (e.g., a network
drive) is set up where the data and all analysis scripts
will be stored (blue box). A Dockerfile for the antici-
pated computing environment is also created. Using
the Dockerfile, a Docker image is built, which is then
shared on Docker Hub. From there, all collaborators
download the Docker image and use it as the comput-
ing environment for the duration of the project. Given
that the Dockerfile might have to be adapted from time
to time (e.g., to make additional packages available),
the docker pull command with the tag latest can
be used before running the container. The latest tag
checks for updates to the image and downloads the
newest version if necessary, which means that all col-
laborators automatically run the most up-to-date con-
tainer (note that the run command with the latest
tag does not check for updates). Using the -v flag in
the docker run command will make the files avail-
able in the container and ensure that changes made in
the container will be saved. At the end of the project,
the final versions of the data, scripts, and the Docker
container (in the form of a link to Docker Hub or,
alternatively, the Dockerfile itself) are then shared
alongside the publication (see orange box).

More advanced containers and workflows. The image
we have built in this tutorial is relatively simple; it includes
only R and a few packages. We chose this example to be
accessible and easily extendable to suit your purpose.
However, some projects require analysis tools beyond R.
For instance, if you have electroencephalography (EEG)
data and want to use MNE-Python (Gramfort et al.,2013,

Containers for Reproducible Science 15

2014) in addition to R for data processing and analysis, an
R container needs to be extended with a Python environ-
ment and the right Python tools need to be installed. We
show an example of a Dockerfile for this advanced sce-
nario in Box 4 and provide a step-by-step guide for build-
ing this container at osf.io/z85k3.

Beyond more elaborate containers, there are also a
number of additional, more advanced features that can
be integrated within the containerization workflow.
These are not covered in depth here for simplicity pur-
poses; however, interested readers may refer to Box 5
for examples of more advanced setups and correspond-
ing resources.

Concluding remarks

Containers are important components to increase repro-
ducibility, but the advantages of containerization have
more widespread ramifications: They facilitate collabora-
tion, especially across global research groups, enabling
efficient workflows with a common template of the
research project. Another exciting prospect brought about
by containers is that of truly cumulative science—sharing
practices such as open data and materials have helped
shape incremental research tremendously, yet cumulative
science can still be hindered by compatibility and

dependency issues. Containerization is the next step in
that process to ensure robustness across users and time
and facilitate secondary data analysis (Weston et al., 2019).

Finally, and beyond advancing scientific research,
investing time and effort in learning and working with
containers may be a wise professional move for research-
ers, especially at early stages of a career. This idea per-
haps seems to run against mainstream thinking about
the cost associated with open practices, especially for
early career researchers (C. Allen & Mehler, 2019; Nosek
et al., 2012; Poldrack, 2019). Yet given job prospects in
research and academia, many researchers may likewise
question whether in-depth, systematic knowledge about
very specific aspects of psychological science remains
valuable or, at the very least, transferable. Thorough
expertise on the validity of a specific scale, construct, or
paradigm may not generalize well to another professional
workplace; in contrast, computational or software skills
such as fluency in one or more programming languages
(e.g., R, Python) or a practical understanding of version
control or containerization (e.g., git, Docker) can easily
generalize to professional settings outside of academia.
In this context, proficiency with containerization, among
the broader set of computational tools required of a
modern scientist, may prove to be a worthwhile invest-
ment for psychological scientists at all career stages.

Container

Dockerfile

Docker Hub

Image

docker pushShare with
publication

Data
scripts

Link to Docker Hub

docker buildadapt adapt

create

Data
Scripts

mount volume

Shared
location

docker
run

create

docker pull

Fig. 10. Example research workflow using containerization.

http://osf.io/z85k3

16 Wiebels, Moreau

Transparency

Action Editor: Daniel J. Simons
Editor: Daniel J. Simons
Author Contributions

K. Wiebels and D. Moreau developed the idea for the article
and wrote the manuscript. Both authors approved the final
manuscript for submission.

Declaration of Conflicting Interests
The author(s) declared that there were no conflicts of inter-
est with respect to the authorship or the publication of this
article.

Funding
D. Moreau and K. Wiebels are supported by a University
of Auckland Early Career Research Excellence Award and
a Marsden grant from the Royal Society of NZ awarded to
D. Moreau.

Open Practices
Open Data: not applicable
Open Materials: https://osf.io/qcwa5

Preregistration: not applicable
All materials have been made publicly available via OSF and
can be accessed at https://osf.io/qcwa5. The Docker images
have been made publicly available via Docker Hub and can
be accessed at hub.docker.com/u/kwiebels. This article has
received the badge for Open Materials. More information
about the Open Practices badges can be found at http://
www.psychologicalscience.org/publications/badges.

ORCID iDs

Kristina Wiebels https://orcid.org/0000-0002-5360-5965
David Moreau https://orcid.org/0000-0002-1957-1941

Acknowledgments

We thank Matti Vuorre, Erin M. Buchanan, and two anonymous
reviewers for their constructive and helpful feedback through-
out the reviewing process. We also thank Ding-Cheng Peng

Sometimes, languages beyond R are required for data analysis. For this example, we want to build a Docker
container with RStudio, Python (Version 3.6 or higher), the mne Python package, and the reticulate (Allaire
et al., 2018) and mne (Engemann, 2020) R packages.
An example Dockerfile for this scenario is shown below. See osf.io/z85k3 for a step-by-step guide.

this is a Dockerfile

use the Rocker tidyverse image for the R environment
FROM rocker/tidyverse:3.6.1

update Debian package manager
RUN apt-get update

install Anaconda
RUN echo 'export PATH=/opt/conda/bin:$PATH' > /etc/profile.d/conda.sh && \
wget --quiet https://repo.anaconda.com/archive/Anaconda3-2020.07-Linux-
x86_64.sh -O ~/anaconda.sh && \
/bin/bash ~/anaconda.sh -b -p /opt/conda && \
rm ~/anaconda.sh

set Python path
ENV PATH /opt/conda/bin:$PATH

configure reticulate to point to the conda Python executable
RUN echo "RETICULATE_PYTHON_ENV=/opt/conda/bin" >> /usr/local/lib/R/etc/
Renviron

install MNE
RUN pip install mne

install reticulate and MNE-R
RUN Rscript -e 'install.packages("reticulate")'
RUN Rscript -e 'devtools::install_github("mne-tools/mne-r")'

Box 4. Docker Containers Beyond R

http://hub.docker.com/u/kwiebels
http://osf.io/z85k3

Containers for Reproducible Science 17

and Lenore Tahara-Eckl for comments and feedback on an
earlier version of this tutorial.

Notes

1. Alternatively, Rocker’s utility function install2.r can be used
(install2.r --error --deps TRUE psych), which will
install psych and its dependencies, throwing an error message if
anything goes wrong.
2. We also adapted code from the raincloudplots package
(M. Allen et al., 2018).

References

Allaire, J. J., Ushey, K., Tang, Y., Eddelbuettel, D., Lewis, B.,
& Geelnard, M. (2018). Reticulate: Interface to ‘Python.’
R Package Version, 1(8). https://github.com/rstudio/ret
iculate

Allen, C., & Mehler, D. M. A. (2019). Open science challenges,
benefits and tips in early career and beyond. PLOS Biology,
17(5), Article e3000246. https://doi.org/10.1371/journal
.pbio.3000246

Allen, M., Poggiali, D., Whitaker, K., Marshall, T. R., & Kievit,
R. (2018). Raincloud plots: A multi-platform tool for robust
data visualization (No. e27137v1). PeerJ Preprints. https://
doi.org/10.7287/peerj.preprints.27137v1

Boettiger, C. (2015). An introduction to Docker for reproduc-
ible research. Association for Computing Machinery, 49(1).
https://doi.org/10.1145/2723872.2723882

Boettiger, C., & Eddelbuettel, D. (2017). An introduction to
Rocker: Docker containers for R. The R Journal, 9(2),
527–536.

Clyburne-Sherin, A., Fei, X., & Green, S. A. (2019). Comput-
ational reproducibility via containers in psychology. Meta-
Psychology, 3. https://doi.org/10.15626/mp.2018.892

Engemann, D. (2020). mne: Fast access to MNE-Python from
within R. https://github.com/mne-tools/mne-r

Epskamp, S. (2019). Reproducibility and replicability in a fast-
paced methodological world. Advances in Methods and
Practices in Psychological Science, 2(2), 145–155.

Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik,
A. I., Erramuzpe, A., Kent, J. D., Goncalves, M., DuPre, E.,
Snyder, M., Oya, H., Ghosh, S. S., Wright, J., Durnez, J.,
Poldrack, R. A., & Gorgolewski, K. J. (2019). fMRIPrep: A
robust preprocessing pipeline for functional MRI. Nature
Methods, 16(1), 111–116.

Glatard, T., Lewis, L. B., Ferreira da Silva, R., Adalat, R., Beck,
N., Lepage, C., Rioux, P., Rousseau, M.-E., Sherif, T.,
Deelman, E., Khalili-Mahani, N., & Evans, A. C. (2015).
Reproducibility of neuroimaging analyses across operat-
ing systems. Frontiers in Neuroinformatics, 9, Article 12.
https://doi.org/10.3389/fninf.2015.00012

Box 5. Advanced Docker Workflows

There are several more advanced ways Docker can be used to facilitate the reproducibility of the research
workflow. Here, we highlight two important ones: automated builds using GitHub and containerization
beyond computing environments.

Automated Builds Using GitHub
The Docker build process can be automated by storing the Dockerfile in a GitHub repository and by linking
this GitHub repository to Docker Hub. The Docker Hub repository can then be configured such that every
time the Dockerfile on GitHub is updated, an updated Docker image is automatically built, tested, and pushed
to Docker Hub. Automatic builds therefore render the manual build and push steps in Figure 10 redundant,
which is especially useful if the Dockerfile is anticipated to change frequently throughout the project. See
docs.docker.com/docker-hub/builds for a guide on how to set up automated builds and Vuorre and Curley
(2018) for a tutorial on Git and GitHub.

Containerization Beyond Computing Environments
Although the focus of this tutorial is on containerization for the data analysis part of a research project,
Docker can facilitate incorporating other parts of the research process into a reproducible workflow, including
running experiments and reporting results.

The Experiment Factory (Sochat, 2018) facilitates creating Docker containers for behavioral experiments. Con-
tainerizing experiments ensures that they can be run anywhere and on any computer and that they can easily
be shared. This is likely especially useful for decentralized research projects, which are run by several labs, to
minimize problems with the setup and compatibility issues. See expfactory.github.io for further details.

Reproducible reporting can be achieved with the R package liftr (Xiao, 2019), which uses Docker to container-
ize and render RMarkdown documents. An RStudio addin is available to facilitate this process. See liftr.me for
further details. See also Peikert and Brandmaier (2019) for a suggested comprehensive workflow, including
version-controlled data management, dependency management using Makefiles, containerized computing
environments using Docker, and dynamic document generation using RMarkdown.

https://github.com/rstudio/reticulate
https://github.com/rstudio/reticulate
https://doi.org/10.1371/journal.pbio.3000246
https://doi.org/10.1371/journal.pbio.3000246
https://doi.org/10.15626/mp.2018.892
http://docs.docker.com/docker-hub/builds

18 Wiebels, Moreau

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A.,
Strohmeier, D., Brodbeck, C., Goj, R., Jas, M., Brooks,
T., Parkkonen, L., & Hämäläinen, M. (2013). MEG
and EEG data analysis with MNE-Python. Frontiers in
Neuroscience, 7, Article 267. https://doi.org/10.3389/
fnins.2013.00267

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A.,
Strohmeier, D., Brodbeck, C., Parkkonen, L., & Hämäläinen,
M. S. (2014). MNE software for processing MEG and EEG
data. NeuroImage, 86, 446–460.

Gronenschild, E. H. B. M., Habets, P., Jacobs, H. I. L.,
Mengelers, R., Rozendaal, N., van Os, J., & Marcelis, M.
(2012). The effects of FreeSurfer version, workstation
type, and Macintosh operating system version on ana-
tomical volume and cortical thickness measurements. PLOS
ONE, 7(6), Article e38234. https://doi.org/10.1371/journal
.pone.0038234

Hester, J., Csárdi, G., Wickham, H., Chang, W., Morgan, M.,
& Tenenbaum, D. (2019). remotes: R package installa-
tion from remote repositories, including “GitHub.” https://
CRAN.R-project.org/package=remotes

Kidwell, M. C., Lazarević, L. B., Baranski, E., Hardwicke, T. E.,
Piechowski, S., Falkenberg, L. -S., Kennett, C., Slowik, A.,
Sonnleitner, C., Hess-Holden, C., Errington, T. M., Fiedler,
S., & Nosek, B. A. (2016). Badges to acknowledge open
practices: A simple, low-cost, effective method for increas-
ing transparency. PLOS Biology, 14(5), Article e1002456.
https://doi.org/10.1371/journal.pbio.1002456

Levenstein, M. C., & Lyle, J. A. (2018). Data: Sharing is car-
ing. Advances in Methods and Practices in Psychological
Science, 1(1), 95–103.

Merkel, D. (2014). Docker: Lightweight Linux containers for
consistent development and deployment. Linux Journal,
2014(239), Article 2. https://www.linuxjournal.com/content/
docker-lightweight-linux-containers-consistent-develop
ment-and-deployment

Nosek, B. A. (2019, June 6). The rise of open science in psychol-
ogy, a preliminary report. https://cos.io/blog/rise-open-
science-psychology-preliminary-report/

Nosek, B. A., Spies, J. R., & Motyl, M. (2012). Scientific Utopia:
II. Restructuring incentives and practices to promote truth
over publishability. Perspectives on Psychological Science,
7(6), 615–631.

Nüst, D., Sochat, V., Marwick, B., Eglen, S. J., Head, T.,
Hirst, T., & Evans, B. D. (2020). Ten simple rules for
writing Dockerfiles for reproducible data science. PLOS
Computational Biology, 16(11), Article e1008316. https://doi
.org/10.1371/journal.pcbi.1008316

Peikert, A., & Brandmaier, A. M. (2019). A reproducible data
analysis workflow with R Markdown, Git, Make, and
Docker. PsyArXiv. https://doi.org/10.31234/osf.io/8xzqy

Poldrack, R. A. (2019). The costs of reproducibility. Neuron,
101(1), 11–14.

R Core Team. (2020). R: A language and environment for sta-
tistical computing. R Foundation for Statistical Computing.

Revelle, W. (2011). An overview of the psych package.
Department of Psychology, Northwest University.

Sochat, V. (2018). The Experiment Factory: Reproducible
experiment containers. Journal of Open Source Software,
3(22), Article 521. https://doi.org/10.21105/joss.00521

Soderberg, C. K. (2018). Using OSF to share data: A step-
by-step guide. Advances in Methods and Practices in
Psychological Science, 1(1), 115–120.

Tiedemann, F. (2020). gghalves: Compose half-half plots
using your favourite geoms. https://CRAN.R-project.org/
package=gghalves

Urbanek, S. (2020). rJava: Low-level R to Java interface. https://
CRAN.R-project.org/package=rJava

Ushey, K. (2021). renv: Project environments. https://CRAN.R-
project.org/package=renv

Ushey, K., McPherson, J., Cheng, J., Atkins, A., & Allaire, J.
J. (2018). packrat: A dependency management system for
projects and their R package dependencies. https://CRAN.R-
project.org/package=packrat

Vuorre, M., & Curley, J. P. (2018). Curating research assets: A tuto-
rial on the git version control system. Advances in Methods
and Practices in Psychological Science, 1(2), 219–236.

Weston, S. J., Ritchie, S. J., Rohrer, J. M., & Przybylski, A. K.
(2019). Recommendations for increasing the transparency
of analysis of preexisting data sets. Advances in Methods
and Practices in Psychological Science, 2(3), 214–227.

Wickham, H. (2011). ggplot2. Wires Computational Statistics,
3(2), 180–185.

Wickham, H. (2017). tidyverse: Easily install and load the
“Tidyverse” (R package Version 1.2. 1). R Core Team.

Wickham, H., & Chang, W. (2016). Devtools: Tools to make devel-
oping r packages easier. R Package Version, 1, 9000.

Wiebels, K., Addis, D. R., Moreau, D., van Mulukom, V.,
Onderdijk, K. E., & Roberts, R. P. (2020). Relational pro-
cessing demands and the role of spatial context in the con-
struction of episodic simulations. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 46(8),
1424–1441. https://doi.org/10.1037/xlm0000831

Xiao, N. (2019). Liftr: Containerize R markdown documents
for continuous reproducibility. https://CRAN.R-project.org/
package=liftr

https://doi.org/10.3389/fnins.2013.00267
https://doi.org/10.3389/fnins.2013.00267
https://doi.org/10.1371/journal.pone.0038234
https://doi.org/10.1371/journal.pone.0038234
https://www.linuxjournal.com/content/docker-lightweight-linux-containers-consistent-development-and-deployment
https://www.linuxjournal.com/content/docker-lightweight-linux-containers-consistent-development-and-deployment
https://www.linuxjournal.com/content/docker-lightweight-linux-containers-consistent-development-and-deployment
https://doi.org/10.1371/journal.pcbi.1008316
https://doi.org/10.1371/journal.pcbi.1008316
https://CRAN.R-project.org/package=gghalves
https://CRAN.R-project.org/package=gghalves
https://CRAN.R-project.org/package=packrat
https://CRAN.R-project.org/package=packrat
https://CRAN.R-project.org/package=liftr
https://CRAN.R-project.org/package=liftr

