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Tutorial

Together with preregistration, one of the primary solu-
tions to address the replication crisis in psychology has 
been to encourage open data and materials (Levenstein 
& Lyle, 2018). Facilitated by the rise of open-source 
programming languages (R, Python), free repositories 
(e.g., OSF, GitHub), and incentive journal policies (e.g., 
open science badges; Kidwell et al., 2016), the field of 
psychology has made important progress toward repro-
ducible results in recent years. These incentives enable 
stronger foundations for future research—as of early 
2019, about 35% of faculty researchers in psychology 
embrace open science practices compared with a mere 
5% just 5 years earlier (Nosek, 2019). Yet, although nec-
essary, sharing data and materials remains insufficient 
to fully ensure reproducible results (Epskamp, 2019) 
because results can differ significantly depending on 
software versions or operating systems (Glatard et al., 
2015; Gronenschild et al., 2012). To alleviate these prob-
lems, it has been suggested that software version num-
bers and details about computing environments (e.g., 
operating system) should be included in the methods of 

scientific articles. However, obtaining previous software 
versions can be cumbersome, especially if the software 
is proprietary or relies on system dependencies (other 
software installed on the computer that the current soft-
ware needs to work) of a specific operating system that 
might not be at one’s disposal.

More effective solutions have been proposed. For 
example, the package renv (Ushey, 2021), superseding 
packrat (Ushey et al., 2018), manages dependencies in 
R (R Core Team, 2020) by storing the source code of all 
R packages used in a project. These can then be recom-
piled for later use, which ensures consistency in R pack-
age versions across users. However, this approach does 
not handle system dependencies or dependencies of 
other programming languages and software packages. 
For example, the package rJava (Urbanek, 2020) needs 
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a specific Java version to be installed on the computer; 
it is therefore possible that rJava works for a given user 
but not another—even if the project is managed by renv 
and operating systems are identical.

Ideally, we want to “package up” (isolate) our whole 
computing environment in a way that anybody on any 
computer can examine and replicate our work, indepen-
dently of installed software, drivers, and operating sys-
tems (see Fig. 1). A popular way to achieve this goal is 
with virtual machines (VMs). A VM is a computer pro-
gram that creates a virtual computer running inside the 
physical computer with its own operating system, soft-
ware, and files. Using VMs, all software and their system 
dependencies (and sometimes scripts and/or data) used 
for a particular project can be bundled up and then 
shared with others. Yet VMs can get very large and slow, 
which can make sharing and using them impractical.

An alternative approach that has gained traction 
recently is containerization. Containers also isolate com-
puting environments but use fewer resources than VMs. 
Containers are thus a lightweight alternative to VMs that 
make more efficient use of the underlying computing 
system and can more easily be shared. Originally mainly 
used in computer science as a way to develop and test 
applications in an isolated environment, containers have 
recently been adopted for scientific computing (Boettiger, 

2015). Containerization in this context is a way to not 
only support reproducibility once a project is completed 
but also to facilitate working efficiently and collabora-
tively while the project is ongoing, by ensuring every-
thing related to a research project runs smoothly and 
identically across all computers used across the life span 
of a project independently of collaborators’ individual 
setups.

Despite the advantages of containers and their preva-
lent use in fields such as computing, software engineer-
ing, and, more recently, neuroscience, containerization 
remains rarely used in psychology, perhaps because of 
a lack of awareness or because using—and especially 
building—containers can seem daunting for those of us 
lacking a computer science background. This tutorial 
aims to remove this barrier and demystify containeriza-
tion by providing a step-by-step guide to using, building, 
and sharing containers within a research workflow. We 
use the container platform Docker and focus on the R 
language. After some background information on 
Docker, we provide an overview of basic Docker com-
mands and of how to run R in Docker containers (Tuto-
rial Part I: Docker Basics and the Rocker Project). In the 
section Tutorial Part II: Building and Sharing Personal-
ized Docker Containers, we provide a step-by-step 
worked example of building, using, and sharing a 
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Fig. 1.  Two dimensions of compatibility enabled by containerization. Compatibility across 
systems relates to differences in system dependencies within or across operating systems; 
here, we chose to depict an example of compatibility across operating systems. Compatibility 
across versions relates to differences between software releases.
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personalized container for a research project. This 
worked example includes all required steps from start 
to finish and is designed to be easily adoptable and 
extendable by readers. We conclude with a brief sum-
mary of the tutorial and an overview of more advanced 
containerization workflows.

Brief Introduction to Docker

Docker (docker.com; Merkel, 2014) is an open-source 
containerization project based on Linux; that is, Linux 
is running inside the containers even though we might 
be on a Windows or Mac computer. Docker consists of 
three components: the Docker software, Docker objects, 
and an online Docker registry (see figure in Box 1). The 
Docker software consists of the Docker client and the 
Docker daemon. The Docker client is a command-line 
tool that you use to tell Docker what you want to do. 
When you type a command, the Docker client talks to 

the Docker daemon in the background, which then does 
all the work, such as building, running, and distributing 
containers. In our case, the Docker client and the Docker 
daemon are both on our computer, but it is possible to 
connect a Docker client to a remote Docker daemon.

The main Docker objects are Docker images and 
Docker containers. A Docker image is a read-only, 
unmodifiable blueprint of the desired computing envi-
ronment. The image contains all instructions to create 
the computing environment and can be shared if others 
want to use the same environment. From the image, 
Docker can create a container—a runnable version 
(instance) of the image, that is, the actual computing 
environment that can be used to run applications or 
conduct analyses. An unlimited number of containers 
can be created from one image, and, in contrast to 
images, containers can be modified while running. These 
changes, however, are not saved back into the image. 
This desirable property means that each time a container 

Box 1.  Glossary of Docker Terminology

Docker engine: The containerization technology that Docker uses. The Docker engine manages containers, 
images, builds, and so on. It consists of the Docker daemon running on the computer and the Docker client 
that communicates with the daemon to execute commands.
Docker client: The command line tool that allows the user to interact with the Docker daemon.
Docker daemon: The background service running on the computer that manages Docker objects and pro-
cesses, such as building, running, and distributing containers.
Dockerfile: A file containing the instructions to build a Docker image. Once the Dockerfile is set up, the 
docker build command can be used to build a docker image from the Dockerfile.
Docker image: The blueprint of a Docker container. Contains instructions for creating a container and defin-
ing the content, its dependencies, and the startup behavior. The docker run command creates a Docker 
container from the Docker image.
Docker container: A runnable instance of a Docker image. Docker containers can be created (docker 
run), stopped (docker stop), restarted (docker start), deleted (docker rm), or connected to storage 
(using the -v flag). The same container can be created and run in any environment.
Docker Hub: Registry for Docker images. Docker images can be downloaded (using docker pull) and 
shared (using docker push) for free on Docker Hub.
Docker ID: Username on Docker Hub.
Volumes: Used to manage data inside containers. By default, data created in a container do not persist when 
a container is removed. Volumes are used to give the container access to files on the computer (e.g., scripts or 
data) and can also be used to save files to the computer. Volumes are initialized when a container is created 
by using the -v flag in the docker run command.

Docker Client Docker Host

Docker Daemon Images

ImagesContainers

Docker Hub

docker build

docker pull

docker run

docker push Volumes
...

...
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is run from a particular image, it is exactly the same; 
you cannot “break” the image, no matter what you do 
in the container. If you want changes you made in the 
container to be saved, you need to create a new image 
that incorporates these changes. You can think of a 
Docker image as a cake recipe and the corresponding 
Docker container as a finished cake. The recipe contains 
the instructions to make the cake, it can be used to make 
as many cakes as you like, and it can be shared to enable 
others to make the same cake. Everyone using the recipe 
ends up with the same kind of cake, which can then be 
modified by adding, for instance, icing or sprinkles. 
However, your addition of icing and my addition of 
sprinkles will not change the recipe, and the next time 
we use the recipe, we get the same reproducible cake 
as before.

Finally, the third Docker component is an online 
repository of Docker images called Docker Hub, from 
which existing images can be downloaded and to which 
you can upload your own images if you want to share 
them. We illustrate all these concepts in practice through-
out the tutorial, which will further clarify them. Box 1 
contains additional details about the Docker architecture 
and definitions of Docker-related terms.

Even though other containerization platforms exist, 
such as CodeOcean (described in detail in Clyburne-
Sherin et al., 2019) and Singularity (sylabs.io), we chose 
to use Docker for this tutorial for five main reasons. First, 
Docker is one of the leading container platforms and has 
been established as best practice in several research fields 
(Boettiger, 2015). Second, Docker runs on all major oper-
ating systems (Linux, macOS, and Windows). Third, 
Docker containers are easy to use, very lightweight, and 
fast. Fourth, Docker images can be stored and shared for 
free on the central registry Docker Hub. Finally, and 
thanks to its growing popularity, Docker benefits from a 
large user community and a rich ecosystem of related 
tools, such as Rocker (rocker-project.org; Boettiger & 
Eddelbuettel, 2017), which provides containers with R 
environments, and Neurodocker (github.com/ReproNim/
neurodocker), which facilitates setting up customized 
containers for neuroimaging projects. Familiarity with 
Docker is also helpful because major tools in neighboring 
fields have moved to using the Docker format, such as 
the standardized functional MRI preprocessing pipeline 
fmriprep (fmriprep.org; Esteban et al., 2019). In psychol-
ogy, similar trends are emerging with projects like the 
Experiment Factory, which allows creating Docker con-
tainers to ensure behavioral experiments can run smoothly 
across platforms (expfactory.github.io; Sochat, 2018).

Disclosures

All materials (Dockerfiles, data, scripts) used in this tuto-
rial are available at osf.io/z85k3; the corresponding 

Docker images can be found at hub.docker.com/u/
kwiebels. A wiki with commonly encountered Docker 
errors is also available at osf.io/z85k3. We designed this 
tutorial to be accessible for novices, but we do assume 
basic knowledge of computers (e.g., knowledge of terms 
such as path). If you want to learn more about basic 
command-line usage, see the Software Carpentry lesson 
on the Unix shell (swcarpentry.github.io/shell-novice). 
For the interested reader wanting to go beyond the mate-
rial covered in this tutorial, a comprehensive general 
Docker guide can be found at docker-curriculum.com.

Tutorial Part I: Docker Basics and the 
Rocker Project

Preparations

Before starting the tutorial, go to osf.io/z85k3 and down-
load the folder tutorial_project to a chosen loca-
tion on your computer. Make a note of where you saved 
this folder because you will need the path to this location 
in the tutorial (for us, the path is /Users/kwiebels, 
so the path to the content of the folder is /Users/
kwiebels/tutorial_project). The folder con-
tains two files, an R script called script.R and a csv 
file called study2_summaryData.csv, which con-
tains data openly available as part of a published study 
by our group (Wiebels et al., 2020).

Installing Docker

Docker is available for a variety of Linux distributions, 
for Mac, and for Windows. On Linux, you will install 
Docker directly; if you are on Mac or Windows, Docker 
is installed through Docker Desktop, an application that 
includes all features needed to build and share contain-
ers. To download and install Docker, follow the detailed 
instructions listed at docs.docker.com/get-docker in the 
section for your operating system. If you are using Win-
dows, see Box 2 for Windows-specific considerations.

Running Docker containers

Once Docker is installed, it is time to launch it! You 
should see the Docker icon in the taskbar, indicating 
that Docker is running. Docker is then accessible from 
the terminal (on Mac, open the terminal by opening the 
Applications folder, then opening Utilities and double-
clicking on Terminal; on Windows, open the PowerShell 
by clicking Start, typing PowerShell, and then clicking 
Windows PowerShell). Once a terminal window is open, 
you can type commands and execute them using the 
return/enter key.

The general syntax for running a Docker container is:

http://github.com/ReproNim/neurodocker
http://github.com/ReproNim/neurodocker
http://fmriprep.org
http://osf.io/z85k3
http://hub.docker.com/u/kwiebels
http://hub.docker.com/u/kwiebels
http://osf.io/z85k3
http://swcarpentry.github.io/shell-novice
http://docs.docker.com/get-docker
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docker run [OPTIONS] IMAGE[:TAG]  
[COMMAND] [ARG. . .]

An IMAGE, from which the container is derived, must 
be specified; the rest of the terms are optional. OPTIONS 
can be used to constrain the container’s behavior; we 

describe a range of them throughout the tutorial. The 
TAG instructs Docker to use a specific version of an 
image, and finally, the COMMAND tells Docker which 
command to execute when the container starts. Most 
of the time, the Docker image developer specifies this 
start-up behavior (e.g., a typical command of an R 

Box 2.  Windows-Specific Considerations

Installation
There are two ways to run Docker on Windows, either using the Hyper-V backend or using the Windows Sub-
system for Linux (WSL) 2 backend (available for Windows 10 Version 1903 or higher). WSL is a full Linux ker-
nel built by Microsoft and allows Docker containers to run natively without the need for emulation. Using the 
WSL 2 backend is recommended because it makes more efficient use of resources and greatly increases speed. 
If possible on your system, Docker will automatically select this option during the installation process (see 
screenshot of the Docker settings below, “Use the WSL 2 based engine” tick box). Depending on the computer 
setup, the WSL 2 feature on Windows might need to be enabled and the Linux kernel update package installed. 
Docker Desktop will alert you to this if these steps are necessary, in which case you can follow Steps 1 through 
5 at docs.microsoft.com/en-us/windows/wsl/install-win10 (for further details about the WSL 2 backend, see 
docs.docker.com/docker-for-windows/wsl). Older versions of Windows will automatically use the Hyper-V 
backend (i.e., the box in the screenshot will be unticked), for which no additional steps are required.

Usage
We recommend using the Windows PowerShell. If you are using WSL 2 and prefer the WSL 2 bash terminal, 
you will need to prepend all commands with ‘sudo.’

Paths
Paths in Windows are different from the ones on Linux and Mac (which is used in this tutorial), so you will 
need to adapt the paths slightly. If your path is C:\Users\kwiebels\tutorial_project, for example, 
you need to change it to /c/Users/kwiebels/tutorial_project. If you are using the WSL 2 bash ter-
minal, the path needs to be changed to /mnt/c/Users/kwiebels/tutorial_project.
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container is simply to start R), but it can be overridden, 
for example to get the R version instead of starting R 
(R --version) or to run an R script that reproduces 
all analyses used in an article (e.g., Rscript 
run_all.R).

To test your Docker installation, open a terminal win-
dow and run the line below:

# type this in the terminal

docker run hello-world

If your installation works correctly, you should see 
the text output shown in Figure 2.

If you see this output, you just ran your first Docker 
container! The container is called hello-world and is 
not overly useful—it does not do anything beyond print-
ing text. The image from which the container was created 
is stored on—and was downloaded from—Docker Hub 
(you can look at the hello-world Docker image 
online at hub.docker.com/_/hello-world). docker run 
automatically downloads (pulls) Docker images from 
Docker Hub if they cannot be found locally (i.e., on your 
computer). You can also explicitly do this by running 
docker pull hello-world (which pulls the image 

from Docker Hub) before docker run hello-world 
(which creates a container from the image and runs it).

Once you have downloaded a Docker image, you can 
run

# type this in the terminal

docker images

to get a list of Docker images available on your com-
puter. You will see the hello-world image along with 
a tag (version), the ID of the image, and its creation date 
and size (see Fig. 3).

In addition to a list of images, you can also get a list 
of all containers on your computer using

# type this in the terminal

docker ps -a

The -a flag means that all containers will be dis-
played, independent of their status (a flag is an option 
appended to a command; for a list of all available flags 
for docker ps, type docker ps --help or check 
the documentation online at docs.docker.com/engine/

Fig. 3.  Screenshot of the docker images command output.

Fig. 2.  Screenshot of the hello-world container output.

http://docs.docker.com/engine/reference/commandline/ps


Containers for Reproducible Science	 7

reference/commandline/ps). You should see a list of all 
containers you have created so far as well as additional 
information about each container—including the con-
tainer ID, the name of the corresponding image, and the 
container’s status (see Fig. 4).

The container’s status indicates for how long the con-
tainer has been running or how long ago it was stopped 
(exited). Some containers stop automatically (as was the 
case with the hello-world container), but some have to 
be stopped manually.

By default, after a container is stopped, it is not 
removed from the computer, and every time you use 
docker run, a new container is created. This means 
that if you run docker run hello-world again, 
you will end up with two hello-world containers on 
your computer. Keeping all created containers on your 
computer unnecessarily takes up disk space given that 
we typically create a new container for each use to start 
with the same clean environment. The only thing we 
need to keep is the image, from which a new container 
can be created any time. To remove an existing container, 
use the following command, replacing <container_
ID> with the container ID from the docker ps -a 
output (e.g., 796e9ec1e334 for the hello-world 
container in our case):

# type this in the terminal

docker rm <container_id>

Note that you can copy and paste the container ID 
instead of having to write it out manually (in the terminal 
on Mac, copying and pasting works as usual; in the 
Windows PowerShell, highlight what you want to copy 
and use right click to paste). To remove all containers 
from your computer at once, the shortcut docker rm 
$(docker ps -a -q) can be used (see Box 3 for a 
list of other useful Docker commands).

To avoid having to manually remove containers, it is 
possible to specify at the time a container is created that 
the container should be removed automatically after it 
is stopped. This is achieved with the --rm flag:

# type this in the terminal

docker run --rm hello-world

This time, the container was automatically removed 
from the computer after exiting. Note that if you use 
Docker Desktop, you can also start, stop, and remove 
containers and images in the Docker Desktop interface.

Fig. 4.  Screenshot of the docker ps -a command output.

docker pull <image_name> downloads an image from DockerHub.
docker run <image_name> runs a container.
docker run -it <image_name> runs a container interactively.
docker run --rm -it <image_name> is the same as above but causes the container to be removed 

after it has been stopped.
docker run --rm -it -v <path_on_computer>:<path_in_container> <image_name> addi-

tionally mounts a local folder into the Docker container (in this case, <path_on_computer> is mounted 
into the container and is accessible in the container under <path_in_container>).

docker exec -it <container_id> bash opens a terminal inside a running Docker container (e.g., to 
install additional libraries in a container that is already running).

docker build -t <image_name> . builds a Docker image called <image_name> in the current folder.
docker images or docker image ls returns a list of all Docker images stored on the computer.
docker ps or docker container ls returns a list of currently running containers.
docker ps -a returns a list of currently running and stopped containers (i.e., all created containers).
docker stop <container_ID> stops a running container.
docker start <container_ID> restarts a stopped container.
docker rm <container_ID> removes a stopped container.
docker rm $(docker ps -a -q) is a shortcut to remove all stopped containers.
docker rmi <image_ID> removes an image.
docker rmi $(docker images -a -q) is a shortcut to remove all images.

Box 3.  Glossary of Common Docker Commands

http://docs.docker.com/engine/reference/commandline/ps
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The Rocker project

Thanks to the Rocker project (rocker-project.org), run-
ning R inside a Docker container is just as easy. Rocker 
maintains Docker images with R or RStudio preinstalled, 
which means that we do not have to create R Docker 
images from scratch. There are different images suited 
for different needs (see all images at hub.docker.com/u/
rocker). Some images only include R or RStudio, whereas 
others already have some R packages preinstalled, for 
example the rocker/tidyverse image, which 
includes the tidyverse (Wickham, 2017), devtools 
(Wickham & Chang, 2016), and remotes (Hester et al., 
2019) packages, or rocker/ml, which includes com-
mon machine learning packages.

Rocker base R containers.  To run a container with a 
base R environment, simply type the line below:

# type this in the terminal

docker run --rm rocker/r-ver

rocker/r-ver here refers to the image r-ver in 
the repository of the Docker Hub user rocker. In the 
terminal, you should see R start, but then exit again 
straight away. This happens because to interact with R, 
you need to use the -it flag. The -it flag lets you 
interact with the R console in the terminal; that is, you 
can use the keyboard to provide inputs, and outputs are 
returned to the terminal. Change the above command to

# type this in the terminal

docker run --rm -it rocker/r-ver

An interactive R session is now running in Docker 
(see Fig. 5), and you can use R as you usually would. 
For example, typing mean(c(2,4)) will return 3. 
When you are done, type q() to quit the R session, stop 
the container, and get back to the terminal.

By default, Docker pulls and runs the latest version 
of an image from Docker Hub. At the time of writing, 
the latest Rocker image uses R version 4.0.4 (see Fig. 5). 
When Docker is used for reproducibility reasons, a ver-
sioned—instead of the latest—image should be used to 
ensure that everyone using the container will get the 
same R version independently of when the container is 
created. To use a specific R version, tags can be speci-
fied. To use R version 3.6.1, for instance, the previous 
command needs to be adapted as follows:

# type this in the terminal

docker run --rm -it rocker/r-ver:3.6.1

Rocker RStudio containers.  Rocker also maintains 
RStudio images, which might provide a more comfortable 
analysis environment than accessing R through the com-
mand line. These containers run an instance of RStudio 
server, which can be accessed from—and interacted with—
a web browser. As with the base R container, you can choose 
the R version you want to use. Running the following com-
mand will start an RStudio container with R version 3.6.1 
(note that the command has to be written on one line):

# type this in the terminal

docker run --rm -d -e PASSWORD=my_
password -p 8787:8787 rocker/
rstudio:3.6.1

Fig. 5.  Screenshot of an interactive base R session in Docker running in the terminal.
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There are three additional flags this time. The -d 
flag means that the container will run in the back-
ground (detached) so that the terminal can still be used 
for other commands. The RStudio server instance needs 
a username (rstudio by default) and a password, set 
using the environment variable PASSWORD with  
-e PASSWORD=my_password. We have chosen my_
password for this example, but this can be changed to 
any password you want. -p 8787:8787 maps a port 

from inside the container to the computer (in the form 
of -p <port_computer>:<port_container>). 
A port enables communication between the computer 
and anything connected to the Internet, in this case the 
RStudio server. To enable the connection to RStudio 
server, RStudio is assigned a port number inside the 
container. Given that the container is isolated from the 
rest of your computer, this port number needs to be 
passed from inside the container to the computer so 
that RStudio can be accessed from a Web browser out-
side the container.

After typing the command, Docker will print the con-
tainer ID to the terminal. To use the containerized RStu-
dio, open a browser window and enter localhost:8787 
as the URL. You will be redirected to a login page (see 
Fig. 6) and prompted to enter the username (rstudio) 
and the password you set (my_password unless you 
changed it).

Upon login, you will be running RStudio in the 
browser (see Fig. 7). This RStudio instance can be used 
just like RStudio running locally on your computer. To 
quit the session, click the red button on the top right 
and close the browser tab.

When you are done, you need to stop the Docker 
container manually in the terminal because it will still 
be running in the background (because of the -d flag 
in the initial docker run command). Get the container 
ID with docker ps -a and type the following com-
mand, replacing <container_ID> with the ID of the 
RStudio container:

Fig. 6.  Screenshot of the RStudio server login screen.

Fig. 7.  Screenshot of an RStudio session running in Docker.
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# type this in the terminal

docker stop <container_ID>

Once stopped, the container is automatically removed 
because we used the --rm flag in our initial command. 
You can confirm this using docker ps -a.

Accessing files in Docker containers

By default, Docker does not have access to any files on 
the computer; however, we might want to load a local 
data set or write results to a specified folder on the com-
puter. To give access to a local folder, the -v (volume) 
flag is used in the docker run command along with 
details about which folder on your computer you want 
to access and the location inside the container at which 
you want the folder to be available (the format for this is 
<path_on_computer>:<path_in_container>).

The command below will map the folder at <path_
on_computer> to the path /home/rstudio inside 
the Docker container (/home/rstudio is the default 
working directory inside RStudio Rocker containers, so 
this is the folder in which you land when you open 
RStudio). Replace <path_on_computer> with the 
path to the folder on your computer that you down-
loaded for this tutorial (e.g., /Users/kwiebels/
tutorial_project). If you are using Windows, you 
will need to adapt the path slightly to make it work in 
the Linux environment inside the container (see Box 2):

# type this in the terminal

docker run --rm -d -e PASSWORD=my_ 
password -p 8787:8787 -v <path_on_ 
computer>:/home/rstudio rocker/
rstudio:3.6.1

After running the command, open RStudio in the 
browser, as before. You should now see the content of 
the folder in the RStudio Files tab (see Fig. 8). Remember 

to stop the container when you are done using docker 
stop <container_ID>.

If your research project does not require packages 
beyond the ones provided by Rocker, you can use one 
of the Rocker images without any modifications. If you 
need additional packages—which will likely be the 
case—it is possible to install them in RStudio while the 
container is running. The problem with this approach, 
however, is that the packages need to be reinstalled every 
time a new container is created, which also means that 
they will not be available automatically for other research-
ers who use your container. To build a personalized 
computing environment that can be used and shared with 
collaborators and other researchers, you can build your 
own Docker image with all required packages. That way, 
the packages will automatically be available in each con-
tainer that is created from the image. In the following 
section, we provide a worked example of how to create 
and use a personalized container and how to share it. 
The guide includes all required steps so that it can easily 
be adopted and extended for your own research.

Tutorial Part II: Building and Sharing 
Personalized Docker Containers

In this section, we aim to provide a step-by-step guide 
on how to build, use, and share a personalized container 
for your research project. Building a personalized con-
tainer involves several steps but is a straightforward 
process, especially if only R is required. In the following 
sections, we demonstrate how to (a) build your own 
personalized Docker container with RStudio and addi-
tional R packages; (b) load a local data set inside your 
personalized container, create summary statistics and a 
plot, and write results to a local folder; and (c) make 
the container available on Docker Hub or OSF (osf.io).

Building a personalized Docker 
container

Building a personalized container involves two main 
steps. We first need to write a Dockerfile—a file with a 

Fig. 8.  Screenshot of an RStudio session with access to a local folder.
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set of instructions in which we specify everything that 
we want to include in the container. This Dockerfile is 
then used to build a Docker image, from which we can 
then run containers.

For this example, we want to build an RStudio con-
tainer with R version 3.6.1 and use the R packages psych 
(Revelle, 2011), ggplot2 (Wickham, 2011), and gghalves 
(Tiedemann, 2020) to generate summary statistics and a 
plot. As described previously, thanks to the Rocker proj-
ect, we do not need to build our container from scratch, 
which would involve installing R on the Linux system 
inside the container. Instead, we can simply use a suit-
able Rocker image as a starting point and then add the 
packages we need. Given that we need ggplot2, which 
takes quite a long time to install, and remotes (Hester 
et al., 2019) to install gghalves from GitHub, we will start 
with the rocker/tidyverse:3.6.1 image, which 
has both packages preinstalled.

To start building your container, open the terminal 
and move into the tutorial_project folder (replace 
<path_to_folder> with your path):

# type this in the terminal

cd <path_to_folder>

You can check that you are in the right location by 
typing pwd (print working directory). Next, create a file 
called Dockerfile in that folder. This file needs to 
have that specific name and must not have an extension, 
such as “.txt,” otherwise the building process will fail. 
On Linux/Mac, use

# type this in the terminal

touch Dockerfile

On Windows, use

# type this in the terminal

New-Item -Path . -Name "Dockerfile"

The general format of a Dockerfile is

# comment
INSTRUCTION arguments

Instructions do not have to be capitalized, but it is 
convention to do so. A Dockerfile must start with a FROM 
<image_name> statement that specifies which Docker 
image is used as the base image (i.e., which Docker 
image will be extended; in our case, the Rocker tidyverse 
image). Other common instructions include COPY 

(copies files from the computer into the container), ENV 
(sets an environment variable), and RUN (runs a com-
mand). See the Dockerfile reference (docs.docker.com/
engine/reference/builder) for a full list. In our example, 
we just want to add some R packages, so we only need 
the FROM and RUN instructions. Note that although the 
COPY instruction can be used to include scripts and data 
in the image, it is preferable to load these files into the 
container at runtime so that the size of the image does 
not increase drastically and sensitive data are not acci-
dentally included in and distributed with the image (for 
general advice on writing Dockerfiles, see Nüst et  al., 
2020).

For our Docker container, we are going to start with 
a versioned Rocker tidyverse image. Open the Dockerfile 
using your favorite text editor, and add the following 
line:

# this is a Dockerfile

# use the Rocker tidyverse image to 
create an R environment

FROM rocker/tidyverse:3.6.1

After this line, we need to specify which additional R 
packages we want to install. Before adding this informa-
tion to the Dockerfile, it is usually a good idea—that can 
save a lot of time—to test installing the packages first. 
Most packages should install without any issues, but 
some packages rely on system libraries that have to be 
installed first and will throw an error at first try. These 
errors can be challenging to track down if they are 
encountered only while building the Docker image. To 
test the installations, we run a container of the tidyverse 
image and then—instead of opening RStudio—open a 
terminal inside the running container. This way, we can 
install the packages from the command line to ensure 
those commands will work in the Dockerfile.

A running container can be accessed using the 
docker exec command, as shown below. First, start 
a container of the tidyverse image you specified in the 
Dockerfile:

# type this in the terminal

docker run --rm -d -e PASSWORD=my_ 
password -p 8787:8787 rocker/
tidyverse:3.6.1

Use:

# type this in the terminal

docker ps -a

http://docs.docker.com/engine/reference/builder
http://docs.docker.com/engine/reference/builder
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to get the ID of the running container and type:

# type this in the terminal

docker exec -it <container_ID> bash

Bash is the command language used by the terminal in 
this container. The command will open a terminal inside 
the container (see Fig. 9). In this case, root is the user, 
and 160ed3f1f63c is the ID of the running container.

In the terminal inside the container, you can try out 
installing the packages you need. Running

# type this in the terminal inside the 
container

Rscript -e 'install.packages("psych")'

will use R’s install.packages() function to install 
the psych package.1 The -e flag specifies that the input 
is an expression that will be evaluated. Given that these 
are normal R commands, you can do anything you usu-
ally do, for example, install a certain package version 
using the devtools package. The process should finish 
without errors. Once the psych package has been 
installed, it will become available in the dockerized  
RStudio in your browser, and you will be able to load 
and use it as usual. The process for gghalves is slightly 
different because it is not available on CRAN (The Com-
prehensive R Archive Network) and therefore needs to 
be installed from GitHub. Rocker’s helper function 
installGithub.r that is available inside the con-
tainer can be used to achieve this:

# type this in the terminal inside the 
container

installGithub.r erocoar/gghalves

Once those two packages have installed successfully, 
you can safely add them to the Dockerfile using RUN 
instructions:

# this is a Dockerfile

# use the Rocker RStudio image for the 
R environment

FROM rocker/rstudio:3.6.1

# install the psych and gghalves 
packages

RUN Rscript -e 'install.
packages("psych")'

RUN installGithub.r erocoar/gghalves

After saving this Dockerfile, exit the terminal inside 
the Docker container by typing exit, and stop the 
running RStudio container with docker stop <cont 
ainer_ID>. It is now time to build the Docker image:

# type this in the terminal

docker build -t tutorial_project .

-t lets us specify a name for our Docker image (we 
chose tutorial_project here) and optionally a tag (by 
default latest is used), and . indicates that the Docker 
image should be built in the current folder (this needs 
to be specified so that Docker knows where the Dock-
erfile is). If you get an error here, make sure you are in 
the right folder in the terminal, otherwise the Dockerfile 
will not be found. Depending on your computer, the 
building process might take a few minutes. Once the 
Docker image is built, we can use it for analyses, which 
we show in the next section.

Using the container

Having set up the container, we can now use it to load 
a data set, compute summary statistics, create a plot, and 
save the output in a folder on the computer. By now, 
you are familiar with how to run a container; all that is 
needed is to replace the image name with the name you 
gave your personalized Docker image. We use the script 
and the data you downloaded from OSF, so you need 
to give Docker access to the folder that contains these 
downloaded files (replace <path_on_computer> 
with the path to that folder):

# type this in the terminal

docker run --rm -d -e PASSWORD=my_ 
password -p 8787:8787 -v <path_on_ 
computer>:/home/rstudio 
tutorial_project

You are now running your first personalized con-
tainer! After opening RStudio in the browser, you will 

Fig. 9.  Screenshot of a bash prompt inside a running container.
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see the data file (study2_summaryData.csv) and 
the R script (script.R). You will also see that the 
packages psych, ggplot2, and gghalves are available.

When looking at the script, you will see that it loads 
some packages, computes summary statistics using the 
psych package, creates a plot using ggplot2 and gghalves,2 
and saves the results in a file. Run the script as you 
usually would in RStudio, and you will see two new 
files being created, descriptives.csv and plot_
difficulty.png. These files are saved in the folder 
on your computer that you specified in the command 
above (the same folder that contains the script and the 
data), which means that you have access to those files 
even after stopping and removing the container. Once 
you have run the script, you can close RStudio and stop 
the container using the docker stop command.

In some situations, you—or others—might just want 
to run the container to reproduce and inspect the results 
instead of interacting with the data or code inside the 
container. In this case, a slightly adapted command can 
be used to start the container, run the script, save the 
output, and then exit and remove the container:

# type this in the terminal

docker run -i --rm -v  
<path_on_computer>:/home/rstudio  
tutorial_project Rscript -e  
"setwd('/home/rstudio'); 
source('script.R')"

Sharing the container

When you have created and used a personalized con-
tainer for a research project, you might want to share it, 
along with the scripts and data, with your collaborators 
while the project is ongoing or upon completion of the 
project to make your analysis reproducible for other 
researchers. Docker containers can be shared either by 
uploading the Docker image to Docker Hub so that oth-
ers can download it or by sharing the Dockerfile on a 
repository such as OSF so that others can build the cor-
responding Docker image themselves. We demonstrate 
both options in the next two sections.

It is good practice to include usage instructions for 
the container in the Dockerfile and/or in a README file. 
To do this, open the Dockerfile and add the following 
information at the bottom of the file:

# this is a Dockerfile

### Usage instructions ####

# Run the container using:

# docker run --rm -d -e PASSWORD=my_
password -p 8787:8787 -v <path_on_ 
computer>:/home/rstudio 
tutorial_project

# Reproduce the analyses using:
# docker run -i --rm -v <path_on_ 

computer>:/home/rstudio tutorial_ 
project Rscript -e 'setwd("/home/ 
rstudio"); source("script.R")'

# The corresponding data and code can 
be found at: https://osf.io/z85k3/

Sharing the Docker image on Docker Hub.  To share 
the image on Docker Hub, you will need to create a free 
Docker Hub account. To do this, go to hub.docker.com, 
click on “Sign up,” and fill out the information. Once your 
account is created, return to the terminal and log in with 
your credentials:

# type this in the terminal

docker login

For Docker to know to which repository on Docker 
Hub to upload your image, you need to tag your image 
with your Docker ID (the username you used when 
creating the account on Docker Hub) and the image 
name in the following format:

docker tag <image_name> <Docker_ID>/ 
<image_name>

The image name can remain the same. Given the 
example above, this would be

# type this in the terminal

docker tag tutorial_project <Docker_
ID>/tutorial_project

You can then upload (push) the container to Docker 
Hub:

# type this in the terminal

docker push <Docker_ID>/tutorial_project

It is important here to use the format <Docker_
ID>/<image_name> so that Docker knows where on 
Docker Hub to publish. Once the image is on Docker 
Hub, others can easily download and run it using

http://hub.docker.com
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docker run --rm -d -e PASSWORD=my_ 
password -p 8787:8787 <Docker_ID>/
tutorial_project

Sharing the Dockerfile on OSF.  If you prefer sharing 
the Dockerfile on OSF, along with any materials or data 
you want to share, you can achieve this very easily. If you 
have never used OSF before to share project-related files, 
follow Soderberg’s (2018) guide. All that is left to do once 
the OSF repository is set up is to upload the Dockerfile 
into that repository. Others can then download that Dock-
erfile and use the docker build command to build the 
corresponding Docker image.

These two approaches can also be combined because 
they both have advantages. Sharing the image on Docker 
Hub makes it easier for others to download and use it 
because they do not need to build the image themselves. 
Sharing the Dockerfile itself has the advantage that others 
can inspect the file to see exactly what is included and 
adapt it for their own purpose if desired. Note that there 
is a slightly more advanced way to upload Docker images 
to Docker Hub, which will automatically make the Dock-
erfile available as well (see Box 5, Automated Builds 
Using GitHub).

Once you have finished the tutorial, you might want 
to delete all containers and images we used throughout 
because they can take up quite a lot of disk space. Use 
the following two commands to achieve this:

# type this in the terminal

docker rm $(docker ps -a -q)
docker rmi $(docker images -a -q)

Discussion

In this tutorial, we explained the basics of containeriza-
tion and provided step-by-step guides for building, 
using, and sharing Docker containers. The first part of 
the tutorial introduced basic Docker commands and the 
Rocker project as a way to run R code in containers. In 
the second part of the tutorial, we showed how to set 
up a personalized container for a research project, from 
writing a Dockerfile to sharing the Docker image.

Containerization is an important step toward making 
research reproducible by providing a consistent comput-
ing environment that can be used by all collaborators 
over the course of a project and that can be shared along 
with the publication. Throughout the tutorial, we focused 
on the R language, but we provide a resource below for 
setting up a Python environment to illustrate the process 
for projects that require tools beyond R. We aimed to 
provide a resource that can be easily adapted and 
extended to one’s own research projects or workflows. 

Below, we summarize some Docker uses that are beyond 
the scope of this tutorial but might be of interest to some 
readers before concluding the tutorial with some general 
remarks.

Additional steps

Integrating containerization into the research work-
flow.  Sharing a container after a research project has been 
finalized ensures that your analyses are reproducible. How-
ever, containerization can also greatly benefit your collabo-
rators—and yourself—throughout the development of the 
project by making sure that code does not break over time 
and that every collaborator works in exactly the same envi-
ronment without the need to synchronize all pieces of soft-
ware manually. This aspect might be especially beneficial 
for collaborators who are not heavily involved in the data 
analysis part of the project and need to inspect the results 
only from time to time or give feedback.

Figure 10 depicts an example workflow with contain-
ers being used as the computing environment from the 
start of a research project. At the beginning of the 
project (purple box), a shared location (e.g., a network 
drive) is set up where the data and all analysis scripts 
will be stored (blue box). A Dockerfile for the antici-
pated computing environment is also created. Using 
the Dockerfile, a Docker image is built, which is then 
shared on Docker Hub. From there, all collaborators 
download the Docker image and use it as the comput-
ing environment for the duration of the project. Given 
that the Dockerfile might have to be adapted from time 
to time (e.g., to make additional packages available), 
the docker pull command with the tag latest can 
be used before running the container. The latest tag 
checks for updates to the image and downloads the 
newest version if necessary, which means that all col-
laborators automatically run the most up-to-date con-
tainer (note that the run command with the latest 
tag does not check for updates). Using the -v flag in 
the docker run command will make the files avail-
able in the container and ensure that changes made in 
the container will be saved. At the end of the project, 
the final versions of the data, scripts, and the Docker 
container (in the form of a link to Docker Hub or, 
alternatively, the Dockerfile itself ) are then shared 
alongside the publication (see orange box).

More advanced containers and workflows.  The image 
we have built in this tutorial is relatively simple; it includes 
only R and a few packages. We chose this example to be 
accessible and easily extendable to suit your purpose. 
However, some projects require analysis tools beyond R. 
For instance, if you have electroencephalography (EEG) 
data and want to use MNE-Python (Gramfort et al.,2013, 
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2014) in addition to R for data processing and analysis, an 
R container needs to be extended with a Python environ-
ment and the right Python tools need to be installed. We 
show an example of a Dockerfile for this advanced sce-
nario in Box 4 and provide a step-by-step guide for build-
ing this container at osf.io/z85k3.

Beyond more elaborate containers, there are also a 
number of additional, more advanced features that can 
be integrated within the containerization workflow. 
These are not covered in depth here for simplicity pur-
poses; however, interested readers may refer to Box 5 
for examples of more advanced setups and correspond-
ing resources.

Concluding remarks

Containers are important components to increase repro-
ducibility, but the advantages of containerization have 
more widespread ramifications: They facilitate collabora-
tion, especially across global research groups, enabling 
efficient workflows with a common template of the 
research project. Another exciting prospect brought about 
by containers is that of truly cumulative science—sharing 
practices such as open data and materials have helped 
shape incremental research tremendously, yet cumulative 
science can still be hindered by compatibility and 

dependency issues. Containerization is the next step in 
that process to ensure robustness across users and time 
and facilitate secondary data analysis (Weston et al., 2019).

Finally, and beyond advancing scientific research, 
investing time and effort in learning and working with 
containers may be a wise professional move for research-
ers, especially at early stages of a career. This idea per-
haps seems to run against mainstream thinking about 
the cost associated with open practices, especially for 
early career researchers (C. Allen & Mehler, 2019; Nosek 
et al., 2012; Poldrack, 2019). Yet given job prospects in 
research and academia, many researchers may likewise 
question whether in-depth, systematic knowledge about 
very specific aspects of psychological science remains 
valuable or, at the very least, transferable. Thorough 
expertise on the validity of a specific scale, construct, or 
paradigm may not generalize well to another professional 
workplace; in contrast, computational or software skills 
such as fluency in one or more programming languages 
(e.g., R, Python) or a practical understanding of version 
control or containerization (e.g., git, Docker) can easily 
generalize to professional settings outside of academia. 
In this context, proficiency with containerization, among 
the broader set of computational tools required of a 
modern scientist, may prove to be a worthwhile invest-
ment for psychological scientists at all career stages.
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Fig. 10.  Example research workflow using containerization.

http://osf.io/z85k3
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Sometimes, languages beyond R are required for data analysis. For this example, we want to build a Docker 
container with RStudio, Python (Version 3.6 or higher), the mne Python package, and the reticulate (Allaire 
et al., 2018) and mne (Engemann, 2020) R packages.
An example Dockerfile for this scenario is shown below. See osf.io/z85k3 for a step-by-step guide.

# this is a Dockerfile

# use the Rocker tidyverse image for the R environment
FROM rocker/tidyverse:3.6.1

# update Debian package manager
RUN apt-get update

# install Anaconda
RUN echo 'export PATH=/opt/conda/bin:$PATH' > /etc/profile.d/conda.sh && \ 
wget --quiet https://repo.anaconda.com/archive/Anaconda3-2020.07-Linux-
x86_64.sh -O ~/anaconda.sh && \ 
/bin/bash ~/anaconda.sh -b -p /opt/conda && \  
rm ~/anaconda.sh

# set Python path
ENV PATH /opt/conda/bin:$PATH

# configure reticulate to point to the conda Python executable
RUN echo "RETICULATE_PYTHON_ENV=/opt/conda/bin" >> /usr/local/lib/R/etc/
Renviron

# install MNE
RUN pip install mne

# install reticulate and MNE-R
RUN Rscript -e 'install.packages("reticulate")'
RUN Rscript -e 'devtools::install_github("mne-tools/mne-r")'

Box 4.  Docker Containers Beyond R

http://hub.docker.com/u/kwiebels
http://osf.io/z85k3
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Notes

1. Alternatively, Rocker’s utility function install2.r can be used 
(install2.r --error --deps TRUE psych), which will 
install psych and its dependencies, throwing an error message if 
anything goes wrong.
2. We also adapted code from the raincloudplots package 
(M. Allen et al., 2018).
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Box 5.  Advanced Docker Workflows

There are several more advanced ways Docker can be used to facilitate the reproducibility of the research 
workflow. Here, we highlight two important ones: automated builds using GitHub and containerization 
beyond computing environments.

Automated Builds Using GitHub
The Docker build process can be automated by storing the Dockerfile in a GitHub repository and by linking 
this GitHub repository to Docker Hub. The Docker Hub repository can then be configured such that every 
time the Dockerfile on GitHub is updated, an updated Docker image is automatically built, tested, and pushed 
to Docker Hub. Automatic builds therefore render the manual build and push steps in Figure 10 redundant, 
which is especially useful if the Dockerfile is anticipated to change frequently throughout the project. See 
docs.docker.com/docker-hub/builds for a guide on how to set up automated builds and Vuorre and Curley 
(2018) for a tutorial on Git and GitHub.

Containerization Beyond Computing Environments
Although the focus of this tutorial is on containerization for the data analysis part of a research project, 
Docker can facilitate incorporating other parts of the research process into a reproducible workflow, including 
running experiments and reporting results.

The Experiment Factory (Sochat, 2018) facilitates creating Docker containers for behavioral experiments. Con-
tainerizing experiments ensures that they can be run anywhere and on any computer and that they can easily 
be shared. This is likely especially useful for decentralized research projects, which are run by several labs, to 
minimize problems with the setup and compatibility issues. See expfactory.github.io for further details.

Reproducible reporting can be achieved with the R package liftr (Xiao, 2019), which uses Docker to container-
ize and render RMarkdown documents. An RStudio addin is available to facilitate this process. See liftr.me for 
further details. See also Peikert and Brandmaier (2019) for a suggested comprehensive workflow, including 
version-controlled data management, dependency management using Makefiles, containerized computing 
environments using Docker, and dynamic document generation using RMarkdown.

https://github.com/rstudio/reticulate
https://github.com/rstudio/reticulate
https://doi.org/10.1371/journal.pbio.3000246
https://doi.org/10.1371/journal.pbio.3000246
https://doi.org/10.15626/mp.2018.892
http://docs.docker.com/docker-hub/builds
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