
ASSOCIATION FOR
PSYCHOLOGICAL SCIENCE

Creative Commons NonCommercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0
License (https://creativecommons.org/licenses/by-nc/4.0/), which permits noncommercial use, reproduction, and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

https://doi.org/10.1177/25152459231160103

Advances in Methods and
Practices in Psychological Science
July-September 2023, Vol. 6, No. 3,
pp. 1 –30
© The Author(s) 2023
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/25152459231160103
www.psychologicalscience.org/AMPPS

Tutorial

Effective data visualization is one of the cornerstones of
clear scientific communication (Friendly, 2008). Numer-
ous guidelines have been written about what makes for
good data visualization, from choosing the right type of
graph (Doumont & Vandenbroeck, 2002) to using color
wisely (Borland & Taylor, 2007) and adapting to one’s
intended audience (Rougier et al., 2014). Other recom-
mendations have emphasized transparency in displaying
statistical results, for example, with a shift from the once-
ubiquitous bar plots to more comprehensive graphs that
include various distribution properties (Allen et al., 2012;
Newman & Scholl, 2012; Weissgerber et al., 2015).

Recent increases in data complexity and software
capabilities have paved the way for more sophisticated
ways of presenting findings. This is especially visible in
popular scientific communication, in which a specific
mode of presentation—dynamic data visualizations—has
flourished. With a blend of animated and interactive
features, dynamic data visualizations can be found in

the classroom (Fawcett, 2018; Moreau, 2015), the news
media (e.g., The New York Times), information campaigns
by nonprofit organizations (e.g., Our World in Data),
and TED talks. Many readers1 would have seen Hans
Rosling’s most popular talk, The Best Stats You’ve Ever
Seen (Rosling, 2006), in which he introduced multifac-
eted data in an easily digestible way using pointed ani-
mations to direct the audience’s attention and stress
important information. The dynamic style of Rosling’s
presentation has since gained traction, and many writers
and speakers from academia to government and industry
have embraced the trend. Clear, powerful visualizations
have become especially important given the growing
need to accurately inform populations about high-stake

1160103 AMPXXX10.1177/25152459231160103Wiebels, MoreauAdvances in Methods and Practices in Psychological Science
research-article2023

Corresponding Author:
David Moreau, School of Psychology & Centre for Brain Research, The
University of Auckland, Auckland, New Zealand
Email: d.moreau@auckland.ac.nz

Dynamic Data Visualizations to Enhance
Insight and Communication Across
the Life Cycle of a Scientific Project

Kristina Wiebels and David Moreau
School of Psychology & Centre for Brain Research, The University of Auckland, Auckland, New Zealand

Abstract
In scientific communication, figures are typically rendered as static displays. This often prevents active exploration of the
underlying data, for example, to gauge the influence of particular data points or of particular analytic choices. Yet modern
data-visualization tools, from animated plots to interactive notebooks and reactive web applications, allow psychologists
to share and present their findings in dynamic and transparent ways. In this tutorial, we present a number of recent
developments to build interactivity and animations into scientific communication and publications using examples and
illustrations in the R language (basic knowledge of R is assumed). In particular, we discuss when and how to build
dynamic figures, with step-by-step reproducible code that can easily be extended to the reader’s own projects. We
illustrate how interactivity and animations can facilitate insight and communication across a project life cycle—from initial
exchanges and discussions in a team to peer review and final publication—and provide a number of recommendations
to use dynamic visualizations effectively. We close with a reflection on how the scientific-publishing model is currently
evolving and consider the challenges and opportunities this shift might bring for data visualization.

Keywords
research workflow, transparency, data analysis, data exploration, scientific communication, knowledge dissemination

Received 9/16/21; Revision accepted 2/8/23

https://us.sagepub.com/en-us/journals-permissions
https://www.psychologicalscience.org/AMPPS
mailto:d.moreau@auckland.ac.nz
http://crossmark.crossref.org/dialog/?doi=10.1177%2F25152459231160103&domain=pdf&date_stamp=2023-07-12

2 Wiebels, Moreau

problems that require collective action, such as global
warming or pandemics.2

Despite these recent advances, dynamic data visual-
izations remain underused in the communication of find-
ings among scientists, for a number of reasons. First,
scientists have historically relied on print-only journals
to disseminate their findings, and many of the current
practices are based on obsolete standards—in the tradi-
tional publishing system, figures had to be static to be
rendered in print. Second, dynamic visualizations can
be challenging to describe accurately given that captions
need to capture a vast number of frames or relationships
between numerous potential variables, especially in rich
data sets. In contrast, figures and graphs in peer-reviewed
journals often present a snapshot of the findings, with
the goal to portray the most important or most impres-
sive findings. Finally, a number of recommendations
have been made to improve plots and figures in scientific
publications (Kelleher & Wagener, 2011), and these have
often emphasized simplicity over seemingly more
advanced, but perhaps less accessible, renderings (e.g.,
three-dimensional plots). Given these potential limita-
tions, we first present the rationale for using dynamic
visualizations in scientific projects.

The Case for Dynamic Visualizations

Effective data visualizations often rely on clarity and sim-
plicity (Few, 2004; Kelleher & Wagener, 2011; Midway,
2020), yet scientific data have become increasingly com-
plex over the last few decades (Cordero et al., 2016;
Kamath, 2001). One key feature of effective dynamic data
visualizations is their ability to pack rich information into
relatively simple displays (Blok, 2005) via two compo-
nents that can be found in most recent, eye-catching
content: interactivity and animation.

Interactive content enables active exploration of data
features, for example, by selecting a subset of observa-
tions, focusing on specific variables, or displaying par-
ticular values or statistics on data-point mouse-overs.
Interactivity may help with collaborative data exploration
(Isenberg et al., 2011); for example, a team member
might have questions about the impact of particular ana-
lytic choices, such as the influence of an outlier on a
model or statistic. Because new visualizations need to be
created to explore each question, this type of conversa-
tion might typically result in back-and-forth communica-
tion over days or weeks and because of delays inherent
to this process, in fewer research questions being
explored altogether. Interactive visualizations provide an
easy way to address queries in an immediate manner
without the need for additional visualizations and thus
can greatly streamline this process. In many cases, inter-
activity can also provide the means to transparently

disclose the impact of analytical choices in statistical
analysis (Ospina et al., 2014) and could serve as a valu-
able tool to teach statistical concepts to trainees (Xie,
2013).

In contrast to interactive plots, in which the user is
actively exploring variables and relationships to better
understand the data at hand and their inherent features,
animations are built to be consumed passively. Animated
content is content that is dynamic either across time—for
example, showing the relationship between variables
across hours, days, or years—or across iterations of another
variable (e.g., participants, experimental conditions, algo-
rithms). This type of visualization can be particularly use-
ful when presenting variable change (Weiss et al., 2002),
illustrating computational algorithms and their outcomes
(Kerren & Stasko, 2002), or displaying the results of simu-
lations (Moreau, 2015). The key component is that the
variable that is being iterated over does not need to be
displayed as another dimension with an additional axis
(e.g., three-dimensional plot) or with another plot alto-
gether for each value (i.e., faceting). Rather, the relation-
ship is implicitly and effortlessly inferred from the natural
flow of the animation, with the user being introduced to
additional content in a passive manner (Rolfes et al., 2020).

In this tutorial, we show how to convert static plots
into dynamic ones in the R language (R Core Team,
2020).3 With various options and implementations, we
first discuss how to build interactivity into scientific
plots—a feature especially interesting at the exploration
stage of a project, for example, to discover relationships
among variables. We then focus on animations, or how
to transition from static to live figures, a property par-
ticularly useful for the presentation of findings. Finally,
we propose to combine interactive and animated fea-
tures via Shiny apps that can be personalized depending
on individual needs and preferences. Blending interac-
tive and animated features facilitates the dissemination
of findings in the scientific community in a transparent
and user-friendly way.

Disclosures

All materials (data, scripts) of this tutorial can be found
at osf.io/fwy8j. The OSF repository includes an RMark-
down file with all code that is used in this tutorial, the
corresponding html file including all dynamic figures,
code for two Shiny apps (one full, one simplified ver-
sion), and two data sets. We designed this tutorial to be
accessible to novices, but we do assume basic knowl-
edge of R and ggplot2 (Wickham, 2016). For researchers
who are not familiar with R and its ggplot2 visualization
capabilities, see Nordmann et al. (2021). Familiarity with
shiny (Chang et al., 2022) is helpful for the final section
of this tutorial but not necessary.

http://osf.io/fwy8j

Advances in Methods and Practices in Psychological Science 6(3) 3

R Packages Enabling Dynamic Content

In the last few years, several R packages have been cre-
ated that can be used to make plots either interactive,
animated, or both. In this tutorial, we use the following
packages: ggiraph (Gohel & Skintzos, 2022), gganimate
(Pedersen & Robinson, 2020), plotly (Sievert, 2020), and
shiny (Chang et al., 2022). Note that although for each
example used in this tutorial we picked one package to
add dynamic content, in most cases, at least one of the
other packages can be used to get a similar result. We
provide a reproducible environment with the renv pack-
age (Ushey, 2021), which allows restoring the state of
this project from the renv.lock file provided at osf.io/
fwy8j. For a more extensive discussion of reproducible
computational environments using R, see Wiebels and
Moreau (2021).

ggiraph and gganimate are packages built on top of
ggplot2. ggiraph enables interactive content by adding
tool tips, hover effects, and JavaScript actions to static
plots via adapted geoms, such as geom_point_
interactive() instead of geom_point(), together
with the aesthetics tooltip, data_id, and onclick.
gganimate focuses on animations instead of interactivity.
In contrast to ggiraph, the geom layers remain unchanged;
instead, gganimate introduces a variety of new grammar
classes, such as transition_states() and tran
sition_time(), that are added to static plots to spec-
ify how a plot should change with time. Animated plots
can be rendered in Markdown or saved in several file
formats, including gif images and a variety of video
formats. For more information, see Gohel (2023) and
Pederson and Robinson (2022).

Plotly is a computing company that provides visual-
ization tools and products for a variety of programming
languages, including R, Python, and Julia. The R package
plotly can be used to create interactive and animated
content and does so via its JavaScript graphing library,
plotly.js. The plots can be created using either stand-
alone code or the ggplotly() wrapper function,
which takes a ggplot object, extracts all features, and
redraws it with plotly.js. For more information on plotly,
see Plotly R Open Source Graphing Library (n.d.).4

Finally, shiny allows building interactive apps that can
be deployed locally (Sharing Apps to Run Locally, 2014)
or on the web (Deploying Shiny Apps to the Web, 2017),
be embedded in RMarkdown documents, or used to
build dashboards. shiny provides user interface functions
that convert R code into the HTML, CSS, and JavaScript
functions necessary for the web content and a style of
programming called “reactive programming,” which
keeps track of dependencies and automatically updates
the code when any input changes. shiny can be used by
itself to make content interactive, or it can be combined

with other packages that enable dynamic visualization.
For more information, see https://shiny.rstudio.com.

Preparations

To follow this tutorial, you will need to have R installed
on your computer. If you do not have R installed and want
to install it locally, follow the instructions at r-project.org.
We recommend using RStudio (RStudio Team, 2020), an
integrated development environment for the R language,
which can be downloaded from rstudio.com.

Before starting the tutorial, download the data files
(imagination_study.csv and intervention_
study.csv) from osf.io/fwy8j to a chosen location on
your computer. These files contain data from a published
study on future imagination and a simulated interven-
tion-study data set, respectively. Open RStudio, go to the
folder of the downloaded files, and create a new R
Script. Alternatively, you can download the RMarkdown
file from the OSF repository (DynamicVisualiza
tions.Rmd) and simply follow and execute the code
that is contained within.

Before creating any plots, you need to install and load
the packages needed for this tutorial. A note for Mac
users: XQuartz needs to be available on your computer
for the ggiraph install to succeed (you can download
the software from https://www.xquartz.org/). Install the
packages that you do not have on your computer yet:

Install packages (code
 snippet 1)

install.packages(“knitr”) # needed
 for knitting RMarkdown files
install.packages(“tidyverse”)
install.packages(“ggridges”)
install.packages(“ggiraph”)
install.packages(“gganimate”)
install.packages(“plotly”)
install.packages(“shiny”)
install.packages(“transformr”) #
 needed for gganimate
install.packages(“gifski) # needed
 for rendering gganimate plots

We use some tidyverse functions to manipulate the
data sets and ggplot2 (which is part of the tidyverse) and
ggridges to build the static plots. All other packages are
used to create dynamic content. In case you encounter
any issues with the installation of these packages, we
provide a reproducible environment that contains all
packages and their versions. To make use of this envi-
ronment, download the renv.lock file from osf.io/fwy8j,

http://osf.io/fwy8j
http://osf.io/fwy8j
https://shiny.rstudio.com
http://r-project.org
http://rstudio.com
https://www.xquartz.org/
http://osf.io/fwy8j

4 Wiebels, Moreau

install renv (install.packages(“renv”)), and
then use the command renv::restore().

Once all packages have successfully installed, you
can load them:

Load packages (code snippet 2)

library(tidyverse)
library(ggridges)
library(ggiraph)
library(gganimate)
library(plotly)
library(shiny)
library(transformr)
library(gifski)

We also set up a custom theme for the plots so that
we do not have to add these specifications to every single
plot:

Set up custom theme (code
 snippet 3)

custom_theme <-
 list(theme_classic(),
 scale_color_manual(
 values = c(“#eeaa7b”,

 “#66b9bf”, “#94618e”)),
 scale_fill_manual(
 values = c(“#eeaa7b”,

 “#66b9bf”, “#94618e”)))

This code chunk specifies that we want to use the
classic ggplot2 theme (for an overview of available
themes, see Wickham et al., n.d.) and three colors we
use to differentiate between the conditions/groups in
our data sets.

Finally, we need to load the data:

Load data (code snippet 4)

imagination_data <- read_csv
 (“imagination_study.csv”)
intervention_data <- read_csv
 (“intervention_study.csv”)

Example 1: future-imagination data set

The future-imagination data set is a subset of a published
study on phenomenological differences between imagin-
ing future events relative to remembering past events
(Wiebels et al., 2020; details can be found at osf.io/
xqm5n/). Twenty participants remembered personal past
events and imagined possible future events. The time it
took to bring these events to mind was measured using
button-press response times, and participants recorded

in how much detail they remembered/imagined these
events. Each past and future event was brought to mind
three times during the experiment to test how response
times and detail ratings changed across time points.

Let us have a look at the data:

Inspect data (code snippet 5)

imagination_data

Time_point in this data set is a factor, but we can
see that it was read in as a numerical variable, so we
need to change its class before we start:

Convert Time_point into
 factor (code snippet 6)

imagination_data$Time_point <-
 as.factor(imagination_data$Time_
 point)

Using this data set, the plots we create throughout
this tutorial address the following research questions:

Research Question 1: Does it take longer to imagine
future events compared with remembering past
events?

Research Question 2: Do future events become faster
to imagine with repetition?

Research Question 3: Can we predict how long it takes
people to imagine future events based on how fast
they remember past events?

Example 2: intervention data set

The second data set is a simulated study comprising data
from 40 participants—20 in each of two groups (inter-
vention and control groups)—with measurements taken
once a week for the duration of 20 weeks. The interven-
tion took place from Week 5 to Week 16, so the data set
includes a 4-week baseline and a 4-week post intervention
phase. There are two outcome variables: performance
on a task that is targeted by the intervention and alert-
ness level on the days of testing.

Let us look at the structure of this data set:

Inspect data (code snippet 7)

intervention_data

Using this data set, we create plots that address the
following research questions:

Research Question 4: How does performance on the
task change over time?

http://osf.io/xqm5n/
http://osf.io/xqm5n/

Advances in Methods and Practices in Psychological Science 6(3) 5

Research Question 5: Does the intervention elicit dif-
ferences in performance between the groups?

Research Question 6: Can people’s performance on
the task be predicted from their alertness level?

All questions for this tutorial have been designed to
illustrate the potential and the advantages of dynamic
visualizations. In the remainder of this section, we pro-
vide static plots that could be used to explore these six
questions. In the following sections, we then demon-
strate how interactive or animated features can be added
to create dynamic visualizations.

Static Plots

Example 1: future-imagination data set

Research Question 1: Does it take longer to imagine
future events compared with remembering past events?

To address the first question, we construct a violin plot
showing response times for remembering past and imag-
ining future events. We also display box plots and indi-
vidual data points within the violins.

Static violin plot (code
 snippet 8)

For this plot, we are only using
 data from time point 1
and we reverse the factor levels of
 Condition
so that the past condition is on
 the left hand side
ggplot(imagination_data %>%
 filter(Time_point == 1),
 aes(x = fct_rev(Condition), y =

 RT)) +
 # Violins
 geom_violin(trim = FALSE, alpha =
 0.6, aes(fill = Condition)) +

 # Boxes
 geom_boxplot(width = 0.1) +
 # Individual data points
 geom_point(alpha = .4) +
 xlab(“Condition”) +
 ylab(“Response time (ms)”) +
 custom_theme +
 theme(legend.position = “none”)

We can see in the resulting Figure 1 that novel future
events take longer to bring to mind than past events.

Research Question 2: Do future events become faster
to imagine with repetition?

To address the second question, we construct a violin
plot with boxes and individual data points again, this
time only for the future events, but for each time point
separately. We also connect the individual data points
with lines to highlight each person’s change in response
time across time points.

Static violin plot with lines
 (code snippet 9)

For this plot, we are only using
 data from the future condition
ggplot(imagination_data %>%
 filter(Condition == “Future”),
 aes(x = Time_point, y = RT)) +
 # Violins
 geom_violin(trim = FALSE, alpha =
 0.6, fill = “#94618e”) +

 # Boxes
 geom_boxplot(width = 0.1) +
 # Individual data points
 geom_point(alpha = .4) +
 # Individual lines
 geom_line(aes(group = ID), alpha =
 .2, linetype = “dashed”) +

 xlab(“Time point”) +
 ylab(“Response time (ms)”) +
 custom_theme

Figure 2 shows that future events are brought to mind
faster when they are imagined a second/third time. This
effect is very consistent across people, as indicated by
the dashed lines.

Research Question 3: Can we predict how long it takes
people to imagine future events based on how fast
they remember past events?

8000

6000

4000

2000

Condition

Re
sp

on
se

 T
im

e
(m

s)

Past Future

Fig. 1. Violin plot displaying response times for remembering past
events and imagining future events.

6 Wiebels, Moreau

For the last question on this data set, we construct a
scatter plot with a trend line for each time point. The
sizes of the points correspond to the mean detail rating
made by each person for these events. Before we create
this plot, we create a wider version of this data set to
have separate columns for the response times in the
future and past conditions, respectively. We also com-
pute mean detail ratings.

Create wide version and means of
 dataset (code snippet 10)

imagination_data_wide <- imagination_
 data %>%

 pivot_wider(names_from = Condition,
 values_from = c(RT, Detail))

imagination_data_wide$Detail_Mean <-
 rowMeans(imagination_data_wide
 [, 5:6])

Using this data set, let us create the scatter plot:

Static scatter plot (code
snippet 11)

ggplot(imagination_data_wide,
 aes(x = RT_Past, y = RT_Future,

 color = Time_point)) +
 # Individual points
 geom_point(alpha = .4, aes(size =
 Detail_Mean)) +

 # Trendlines
 geom_smooth(method = “lm”) +
 # Distributions
 geom_rug(alpha = .4) +
 xlab(“Response time past (ms)”) +
 ylab(“Response time future (ms)”) +
 custom_theme +
 guides(color = guide_legend(title =
 “Time point”),

 size = guide_legend(title =
 “Detail rating”))

Figure 3 shows that past and future response times
are positively correlated for all three time points.

8000

6000

4000

2000

0

Re
sp

on
se

 T
im

e
(m

s)

Time Point
1 2 3

Fig. 2. Violin plot displaying response times for imagining future
events across time points.

6000

4000

2000

Response Time Past (ms)

Re
sp

on
se

 T
im

e
Fu

tu
re

 (m
s)

1000 2000 3000 4000

1
2
3

Time Point

Detail Rating

2.4
2.8
3.2
3.6

Fig. 3. Scatter plot displaying the correlation between past-event and future-event
response times for each time point.

Advances in Methods and Practices in Psychological Science 6(3) 7

Example 2: intervention data set

Research Question 4: How does performance on the
task change over time?

To address the first question for this data set, we con-
struct a line graph. Two bold lines in Figure 4 indicate
group-average performance to see whether task perfor-
mance might differ between groups. In addition, we
display each person’s individual performance.

Static line graph (code
 snippet 12)

ggplot(intervention_data, aes(x =
 Week, y = Task, color = Group)) +

 # Gray rectangle to highlight
 intervention phase

 annotate(
 “rect”,
 xmin = 4.5,
 xmax = 16.5,
 ymin = 0,
 ymax = Inf,
 alpha = 0.1,
 fill = “gray45”
) +
 # Label for rectangle
 annotate(
 geom = “text”,
 x = 10.5,
 y = max(intervention_data$Task) + 1,
 label = “Intervention”,
 size = 3.5,
 color = “gray35”
) +
 # Individual lines
 geom_line(aes(group = ID), size =
 .5, alpha = .15) +

 # Group average lines
 stat_summary(geom = “line”, fun =
 “mean”) +

 # Group average points
 stat_summary(geom = “point”, fun =
 “mean”) +

 ylab(“Task performance”) +
 custom_theme +
 theme(legend.position = “top”)

Figure 4 shows that performance on the task remained
relatively stable across the 20 weeks for the control
group, whereas performance gradually improved from
shortly after the onset until the end of the intervention
for the intervention group.

These data and the divergence in task performance
between groups across time can also be nicely visualized
with a ridgeline plot (Fig. 5):

Static ridgeline plot (code
 snippet 13)

We flip the y-axis, so that Week 1
 is at the top
ggplot(intervention_data,
 aes(
 x = Task,
 y = fct_rev(as.factor(Week)),
 color = Group,
 fill = Group
)) +
 geom_density_ridges(alpha = .4) +
 xlab(“Task Performance”) +
 ylab(“Week”) +
 custom_theme

If the focus is on individual performance and its
change across time, we can also construct a heat map:

Static heatmap (code
 snippet 14)

ggplot(intervention_data, aes(
 x = Week,
 y = ID,
 group = Group,
 fill = Task
)) +
 # Tiles
 geom_tile(color = “white”, size =
 0.35) +

15

5

5 10 15 20

0

10

20

25

Ta
sk

 P
er

fo
rm

an
ce

Week

Intervention

ControlGroup Intervention

Fig. 4. Line graph displaying group-average and individual task per-
formance over time.

8 Wiebels, Moreau

 # Lines indicating the start and
 end of the intervention

 geom_vline(xintercept = c(4.5,
 16.5), col = “black”) +

 # Label for start line
 geom_label(
 x = 4.5,
 y = 42,
 label = “Start of intervention”,
 size = 3.5,
 fill = “white”,
 label.size = NA
) +
 # Label for end line
 geom_label(
 x = 16.5,
 y = 42,
 label = “End of intervention”,
 size = 3.5,
 fill = “white”,
 label.size = NA
) +
 scale_fill_distiller(palette =
 “YlGnBu”) +

 theme_minimal() +
 scale_x_continuous(expand =
 c(0, 0)) +

 coord_cartesian(clip = “off”) +
 theme(legend.position = “top”) +
 ylab(“Participant ID”) +
 guides(fill = guide_colorbar
 (title = “Task performance”)) +

 theme(panel.grid = element_blank())

The resulting plot (see Fig. 6) visualizes each person’s
performance on the task across the 50 weeks, expressed
by the color of the tiles.

Research Question 5: Does the intervention elicit dif-
ferences in performance between the groups?

Another potential research question relates to observed
group differences at specific time points of the interven-
tion to examine the efficacy of the intervention. This
aspect of the data is nicely visualized with a box plot. In
our case, we are interested in group differences in Week
1 (start of the baseline), Week 5 (start of the interven-
tion), Week 16 (end of the intervention), and Week 20
(end of the postintervention phase). We are also adding
individual data points. Let us construct the box plot:

Static box plot (code snippet 15)

 # For this plot, we are only using
 data from the critical time points
and the boxplots need the variable
 Week to be a factor
ggplot(intervention_data %>% filter
 (Week %in% c(1, 4, 16, 20)),
 aes(y = Task, x = as.factor

 (Week), color = Group)) +
 # Points indicating individual
 performance

 geom_point(alpha = .4) +
 # Boxes with gray points for
 outliers

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

W
ee

k

10 20
Task Performance

Control

Group

Intervention

Fig. 5. Ridgeline plot displaying task performance for each group over time.

Advances in Methods and Practices in Psychological Science 6(3) 9

 geom_boxplot(
 aes(fill = Group),
 alpha = .4,
 width = .5,
 position = position_dodge(.7),
 outlier.color = “gray”
) +
 xlab(“Week”) +
 ylab(“Task performance”) +
 custom_theme

The resulting plot (see Fig. 7) suggests no differences
at the first two time points, after which task performance
appears to be higher for the intervention group than for
the control group.

Research Question 6: Can people’s performance on
the task be predicted from their alertness level?

Our last question is about the relationship between task
performance and alertness level. An important aspect to
visualize here is whether this relationship changes over
the course of the intervention to check whether the
intervention changes the relationship between the vari-
ables (e.g., whether task performance becomes less cor-
related with alertness level).

To that end, we construct a scatter plot correlating
task performance with alertness level using different
colors to indicate different group and weeks:

Static scatter plot (code
 snippet 16)

ggplot(intervention_data, aes(x =
 Alertness, y = Task, group =
 Group)) +
 # Individual points

S01
S02
S03
S04
S05
S06
S07
S08
S09
S10
S11
S12
S13
S14
S15
S16
S17
S18
S19
S20
S21
S22
S23
S24
S25
S26
S27
S28
S29
S30
S31
S32
S33
S34
S35
S36
S37
S38
S39
S40

10 15 20

Pa
rti

ci
pa

nt
 ID

Task Performance

Start of Intervention End of Intervention

10 205 15
Week

Fig. 6. Heat map displaying individual performance over time.

10 Wiebels, Moreau

 geom_point(aes(fill = Week, shape =
 Group),

 size = 2,
 alpha = .4) +
 # Group trendlines
 geom_smooth(aes(color = Group),
 method = “lm”, fullrange = TRUE) +
 ylab(“Task Performance”) +
 theme_classic() +
 scale_fill_distiller(palette =
 “YlGnBu”) +
 scale_color_manual(values =
 c(“#eeaa7b”, “#66b9bf”)) +
 scale_shape_manual(values = c(22, 23))

Positive correlations across all weeks for both the
intervention and the control groups can easily be

identified (see Fig. 8), but how these correlations change
across weeks is less easily discernible.

Although all of these plots convey useful information,
adding dynamic content can extend functionality by
either making the plots more suitable for data explora-
tion or making the data more easily digestible for an
audience during presentations. We illustrate these two
aspects of dynamic plotting in the next sections.

Make It Pop: Interactive Plots

In this section, we demonstrate how to add interactive
features to some of the plots above. Interactive plots are
especially useful during the data-exploration phase, for
example, to identify outliers by highlighting data of par-
ticular participants or to get a better overview of the
data by visualizing descriptive statistics on the plots.

1 4 16 20
Week

15

10

20

Ta
sk

 P
er

fo
rm

an
ce

Control

Group

Intervention

Fig. 7. Static box plot displaying potential group differences at specific time points.

15

15

5 5

10
10

20

20

Ta
sk

 P
er

fo
rm

an
ce

0.5 0.6 0.7 1.00.90.8
Alertness

Control

Group

Intervention

Week

Fig. 8. Scatter plot displaying the correlation between task and underlying construct
for the two groups across all weeks.

Advances in Methods and Practices in Psychological Science 6(3) 11

Example 1: future-imagination data set

Let us start with the violin plot we constructed for our
first research question (see Fig. 1; code snippet 8). This
plot is useful to inspect differences between conditions,
but it is not as easy to identify data of specific individu-
als. We could assign different colors or shapes to the
individual data points, but especially with large groups,
this gets messy very quickly. A nice alternative is to make
this plot interactive. Using the package ggiraph, we can
highlight the data of single individuals by hovering over
data points.

As mentioned earlier, ggiraph provides adapted
geoms that will create the interactivity. To build an inter-
active version of the violin plot, we build the plot again,
replacing ggplot2’s geom_point() with ggiraph’s inter-
active alternative geom_point_interactive():

Interactive violin plot (code
 snippet 17)

p_violin_interactive <-
 ggplot(imagination_data %>% filter
 (Time_point == 1),

 aes(x = fct_rev(Condition),
 y = RT)) +

 # Violins
 geom_violin(trim = FALSE, alpha =
 0.6, aes(fill = Condition)) +

 # Boxes
 geom_boxplot(width = 0.1) +
 # Individual data points
 geom_point_interactive(aes(tooltip

 = ID, data_id = ID), alpha = .4) +
 xlab(“Condition”) +
 ylab(“Response time (ms)”) +
 custom_theme +
 theme(legend.position = “none”)

The code is identical to the previous version, apart
from the name of the geom and the aesthetics that spec-
ify details of the interactivity. Inside geom_point_
interactive(), we set tooltip and data_id to
the subject identifier ID. This will display the partici-
pant’s ID when one hovers over a data point and high-
light all of this individual’s data.

Handing this object to the girafe() function will
create and display the interactive plot:

Display interactive violin plot
 (code snippet 18)

girafe(ggobj = p_violin_interactive,
 options = list(

 opts_hover_inv(css = “opacity:
 0.2”),

 opts_hover(css = “stroke-
 width:1”)

))

In addition to passing the name of the saved plot, the
girafe() function also lets us specify further options.
We added some hover options to make the nonselected
data points transparent (opts_hover_inv(css =
“opacity:0.2”)) and to slightly increase the outline
of the points (opts_hover(css = “stroke-
width:1”)) when highlighting individuals.

The result is a plot with which we can interact. Using
this interactive version of the plot, we can inspect indi-
viduals’ data points along with the participant label (see
Fig. 9), which might be more cumbersome to find out
using the static version of the plot or inspecting the data
themselves.

Using the same strategy, we can also make the second
violin plot (see Fig. 2; code snippet 9) interactive.
This time, we use geom_line_interactive() in
addition to ggiraph’s interactive version of geom_
point().

Interactive violin plot with lines
 (code snippet 19)

p_violin_with_lines_interactive <-
 ggplot(imagination_data %>%
 filter(Condition == “Future”),

 aes(x = Time_point, y = RT)) +
 # Violins

8000

6000

4000

2000

Condition

Re
sp

on
se

 T
im

e
(m

s)

Past Future

Fig. 9. Screenshot of interactive violin plot. Plot created with the
ggiraph package. The interactive version is available at osf.io/tj2xr.

http://osf.io/tj2xr

12 Wiebels, Moreau

 geom_violin(trim = FALSE, alpha =
 0.6, fill = “#94618e”) +

 # Boxes
 geom_boxplot(width = 0.1) +
 # Individual data points
 geom_point_interactive(
 aes(tooltip = ID, data_id = ID),
 alpha = .4) +
 # Individual lines
 geom_line_interactive(
 aes(group = ID, tooltip = ID, data_
 id = ID),

 alpha = .2,
 linetype = “dashed”) +
 xlab(“Time point”) +
 ylab(“Response time (ms)”) +
 custom_theme

As before, girafe() will create and display the
interactive plot:

Display interactive violin plot
 with lines (code snippet 20)

girafe(ggobj = p_violin_with_lines_
 interactive,
 options = list(
 opts_hover_inv(css = “opacity:

 0.2”),
 opts_hover(css = “stroke-width:1”)
))

In this interactive version of the plot (see Fig. 10), the
lines connecting individuals’ data points are highlighted
in addition to the points, a feature that might be espe-
cially useful with bigger data sets.

Finally, ggiraph and its geom_point_interactive() can
also be used to easily make the scatter plot (see Fig. 3;
code snippet 11) interactive:

Interactive scatter plot (code
 snippet 21)

p_scatter_interactive <-
 ggplot(imagination_data_wide,
 aes(x = RT_Past, y = RT_Future,

 color = Time_point)) +
 # Individual points
 geom_point_interactive(
 aes(size = Detail_Mean, tooltip =

 ID, data_id = ID),
 alpha = .4) +
Trendlines
 geom_smooth(method = “lm”) +
Distributions
geom_rug(alpha = .4) +
 xlab(“Response time (ms) past
 events”) +

 ylab(“Response time (ms) future
 events”) +

 custom_theme +
 guides(color = guide_legend(title =
 “Time point”),

 size = guide_legend(title =
 “Detail rating”))

girafe(ggobj = p_scatter_interactive,
 options = list(
 opts_hover_inv(css = “opacity:

 0.2”),
 opts_hover(css = “stroke-width:1”)
))

This interactive version of the scatter plot (Fig. 11)
allows us to highlight individuals’ data points across the
three time points.

Example 2: intervention data set

Let us look at the plots for the second data set. The line
graph we constructed for Research Question 4 (see Fig.
4; code snippet 12) is useful to inspect group trends, but
making it interactive makes it very easy to spot indi-
vidual trajectories or atypical patterns in the data. To

8000

6000

4000

2000

0

Re
sp

on
se

 T
im

e
(m

s)

Time Point
1 2 3

Fig. 10. Screenshot of interactive violin plot with lines. Plot created
with the ggiraph package. The interactive version is available at osf
.io/tj2xr.

http://osf.io/tj2xr
http://osf.io/tj2xr

Advances in Methods and Practices in Psychological Science 6(3) 13

build an interactive version of the line graph, we replace
ggplot2’s geom_line() with ggiraph’s interactive alter-
native geom_line_interactive():

Interactive line graph (code
 snippet 22)

p_line_interactive <-
 ggplot(intervention_data, aes(x =
 Week, y = Task, color = Group)) +

 # Gray rectangle to highlight
intervention phase

 annotate(
 “rect”,
 xmin = 4.5,
 xmax = 16.5,
 ymin = 0,
 ymax = Inf,
 alpha = 0.1,
 fill = “gray45”
) +
 # Label for rectangle
 annotate(
 geom = “text”,
 x = 10.5,

 y = max(intervention_data$Task) + 1,
 label = “Intervention”,
 size = 3.5,
 color = “gray35”
) +
 # Individual lines
 geom_line_interactive(aes(
 group = ID,
 tooltip = ID,
 data_id = ID
),
 size = .5,
 alpha = .15) +
 # Group average lines
 stat_summary(geom = “line”,
 fun = “mean”) +
 # Group average points
 stat_summary(geom = “point”,
 fun = “mean”) +
 ylab(“Task performance”) +
 custom_theme +
 theme(legend.position = “top”)

As with the other data set, handing this object to the
girafe() function will create and display the interac-
tive plot:

6000

4000

2.4
2.8
3.2
3.6

1000 2000

2000

3000 4000

Re
sp

on
se

 T
im

e
(m

s)
 F

ut
ur

e
Ev

en
ts

Response Time (ms) Past Events

Time Point

Detail Rating

1
2
3

Fig. 11. Screenshot of interactive scatter plot. Plot created with the ggiraph pack-
age. The interactive version is available at osf.io/tj2xr.

http://osf.io/tj2xr

14 Wiebels, Moreau

Display interactive line graph
 (code snippet 23)

girafe(ggobj = p_line_interactive,
 options = list(
 opts_hover_inv(css = “opacity:

 0.2”),
 opts_hover(css = “stroke-

 width:1.5”)
))

Using this interactive version of the plot (see Fig. 12),
we can inspect individuals’ trajectories across time easily,
get the participant labels, and identify potential outliers.

In a similar way, the heat map displaying individual
performance (see Fig. 6; code snippet 14) can also be
made interactive. As before, we use ggiraph and change
only the geom layer:

Interactive heatmap (code
snippet 24)

p_tile_interactive <-
 ggplot(intervention_data, aes(
 x = Week,
 y = ID,
 group = Group,
 fill = Task
)) +
 # Tiles
 geom_tile_interactive(color = “white”,
 size = 0.35,
 aes(tooltip = Task, data_

 id = ID)) +
 # Line indicating the start of the
 intervention

 geom_vline(xintercept = c(4.5,
 16.5), col = “black”) +

 # Label for start line
 geom_label(
 x = 4.5,
 y = 42,
 label = “Start of intervention”,
 size = 3.5,
 fill = “white”,
 label.size = NA
) +
 # Label for end line
 geom_label(
 x = 16.5,
 y = 42,
 label = “End of intervention”,
 size = 3.5,
 fill = “white”,
 label.size = NA
) +

 scale_fill_distiller(palette =
 “YlGnBu”) +

 theme_minimal() +
 scale_x_continuous(expand = c(0,
 0)) +

 coord_cartesian(clip = “off”) +
 theme(legend.position = “top”) +
 ylab(“Participant ID”) +
 guides(fill = guide_colorbar(title
 = “Task performance”)) +

 theme(panel.grid = element_blank())

This time, geom_tile() is replaced by geom_
tile_interactive(). Inside this function, we spec-
ify that we want to display the task-performance values
(tooltip = Task). The line data_id = ID ensures
that all data of one individual is highlighted; changing
data_id to Week instead will highlight a particular
week. Let us use the girafe() function to create the
interactive plot:

Display interactive heatmap
 (code snippet 25)

girafe(ggobj = p_tile_interactive,
 options = list(
 opts_hover_inv(css = “opacity:

 0.4”),
 opts_hover(css = “stroke-
 width:.5”)
))

Apart from slightly adapting the hover options, the
code is the same as for the line graph (see Fig. 13).

Ta
sk

 P
er

fo
rm

an
ce

Week

Intervention

15

5

0

10

20

25

ControlGroup Intervention

5 10 15 20

S39

Fig. 12. Screenshot of interactive line graph. Plot created with the
ggiraph package. The interactive version is available at osf.io/tj2xr.

http://osf.io/tj2xr

Advances in Methods and Practices in Psychological Science 6(3) 15

In the data-exploration phase, it might also be useful
to add summary statistics to a plot so that specific values
can be directly inspected without the need to generate
them separately, for example, in the form of a table. This
can be rendered easily with the plotly package. Plotly’s
syntax is slightly different to the one used by ggplot2,
but the plot is also created in layers. Let us use plotly to
create an interactive version of the box plot from earlier
(see Fig. 7; code snippet 15):

Interactive box plot (code
 snippet 26)

For this plot, we are only using
 data from the critical time points
and the boxplots need the variable
 Week to be a factor
plot_ly(

 intervention_data %>% filter(Week
 %in% c(1, 4, 16, 20)),

 y = ~Task,
 x = ~as.factor(Week),
 color = ~Group,
 # Boxes
 type = “box”,
 colors = c(“#eeaa7b”, “#66b9bf”)
) %>%
 # Grouping of boxes
 layout(boxmode = “group”) %>%
 # Points indicating individual
 performance

 add_trace(type = “scatter”) %>%
 layout(xaxis = list(title =
 list(text = “Week”)),

 yaxis = list(title = list(text =
 “Task performance”)))

S01
S02
S03
S04
S05
S06
S07
S08
S09
S10
S11
S12
S13
S14
S15
S16
S17
S18
S19
S20
S21
S22
S23
S24
S25
S26
S27
S28
S29
S30
S31
S32
S33
S34
S35
S36
S37
S38
S39
S40

Task Performance

Start of Intervention End of Intervention

10 15 20

Pa
rti

ci
pa

nt
 ID

10 205 15
Week

Fig. 13. Screenshot of interactive heat map. Plots created with the ggiraph package. The interactive version
is available at osf.io/tj2xr.

16 Wiebels, Moreau

We use the plot_ly() instead of the ggplotly()
function here because although the latter works well
with most simple types of plots, it does not handle the
grouping properly in this case. As with ggplot2, we first
specify which data set and variables we want to use. We
also specify that we want to create a box plot (type =
“box”), the line layout(boxmode = “group”)
handles the grouping, and the last line adds points to
the plot (add_trace(type = “scatter”)). For
this plot, we additionally specify the colors because our
custom theme is ggplot2-specific. The code chunk pro-
duces the plot displayed in Figure 14. Hovering over
different boxes in the plot displays useful summary sta-
tistics. The values of single data points can also be dis-
played. Some additional interesting features provided by
plotly are that parts of the plot can be hidden by clicking
on legend entries and zoomed by clicking and dragging
parts of the plot with the mouse. The toolbar on the top
right can be used for further functionalities, such as sav-
ing the plot.

Make It Smooth: Building Animations

Animations, which allow visualizing the evolution of
data across a variable such as time, are particularly use-
ful for the presentation of findings, for example, during
talks. Several packages exist now that make turning plots
into animations fairly straightforward.

Example 1: future-imagination data set

We start with the violin plot from earlier (see Fig. 2; code
snippet 9) and adapt it so that the three violin plots are
revealed sequentially. Using the gganimate package, the
ggplot2 code can be reused, with minimal additional
code that specifies the desired animation type. In this
case, we add gganimate’s layer transition_time()
to the ggplot2 code, which declares that data should be
revealed along a continuous variable (in this case,
Time_point). If no animation gets created and you
get the error message file_renderer failed to
copy frames to the destination directory,
check for writing permissions or try running Rstudio as
administrator.

There are two parts to creating animated plots with
gganimate. First, we specify the plot and the animation
type we want to use:

Animated violin plot with lines
 (code snippet 27)

p_violin_animated <-
 ggplot(imagination_data %>%
 filter(Condition == “Future”),

 aes(x = as.numeric(Time_point),
 y = RT)) +

 # Violins

Fig. 14. Screenshot of interactive box plot. Plot created with the plotly package. The
interactive version can is available at osf.io/tj2xr.

Advances in Methods and Practices in Psychological Science 6(3) 17

 geom_violin(trim = FALSE, alpha =
 0.6, fill = “#94618e”) +

 # Boxes
 geom_boxplot(width = 0.1) +
 # Points indicating individual
 performance

 geom_point(alpha = .4) +
 xlab(“Time point”) +
 ylab(“Response time (ms)”) +
 custom_theme +
 transition_time(as.numeric(Time_
 point)) +
 shadow_mark() +
 ease_aes(‘cubic-in-out’)

Using Time_point inside gganimate’s transi-
tion_time() specifies that the plot should be revealed
along the three time points of the experiment during
which the same event was imagined. The layer shadow_
mark() ensures that once the plots are revealed, they
persist instead of disappearing, and the ease_aes()
function defines the easing of the animation. To find all
possible easing options, see Pedersen and Robinson (n.d.).

The animated version of the plot can be displayed in
Rstudio or in an html file by either printing the variable
name or using gganimate’s animate() function:

Display animated violin plot with
 lines (code snippet 28)

animate(p_violin_animated, end_pause
 = 40)

Using this function, we can specify additional argu-
ments. Here, we added a pause of 40 frames at the end
of the animation, before it starts from the beginning. The
renderer can also be changed if a different file format is
preferred. The renderer av_renderer(), for example,
will return a video as output, which can be useful to
pause the animation during presentations. The resulting
animation is visualized in Figure 15.

Finally, the animation can be saved to file using:

Save animated violin plot with
 lines (code snippet 29)

anim_save(“violin_anim.gif”,
 animation = last_animation())

The function last_animation() is used analo-
gously to ggplot2’s last_plot() to retrieve the most
recently created animation. Alternatively, the animation
can be saved into a variable, and the variable name can
then be used in anim_save().

In a similar way, we can also use gganimate to ani-
mate the scatter plot from the first example (see Fig. 3;
code snippet 11) to cycle through the time points. This
time, we use gganimate’s transition_states(),
which allows animating over a categorical variable:

Animated scatter plot (code
 snippet 30)

p_scatter_animated <-
 ggplot(imagination_data_wide,
 aes(x = RT_Past, y = RT_Future,

 color = Time_point)) +
 # Individual points
 geom_point(alpha = .4, aes(group =
 ID, size = Detail_Mean)) +

 # Trendlines
 geom_smooth(method = “lm”, se =
 FALSE, aes(group = Time_point)) +

 # Distributions
 geom_rug(alpha = .4, aes(group =
 ID)) +

 xlab(“Past construction time
 (ms)”) +

 ylab(“Future construction time
 (ms)”) +

 custom_theme +
 guides(color = guide_legend(title =
 “Time point”),

 size = guide_legend(title =
 “Detail rating”)) +

 transition_states(Time_point,
 wrap = FALSE) +

 shadow_mark() +
 ease_aes(‘cubic-in-out’)

As before, let us view the animation using the
animate() function:

Display animated scatter plot
 (code snippet 31)

animate(p_scatter_animated, end_
 pause = 40)

The animation is visualized in Figure 16.

Example 2: intervention data set

For the intervention data set, we illustrate the same
process using gganimate for the line graph, the ridgeline
plot, and the scatter plot. We start with the line graph
(see Fig. 4; code snippet 12) and adapt it so that the
data are gradually revealed across the weeks of the

18

F
ig

.
1
5
.

Sc
re

en
sh

o
ts

 o
f
se

le
ct

ed
 f
ra

m
es

 o
f
th

e
an

im
at

ed
 v

io
li
n
 p

lo
t.
 P

lo
t
cr

ea
te

d
 w

it
h
 t
h
e

gg
a

n
im

a
te

 p
ac

k
ag

e.
 T

h
e

co
rr

es
p
o
n
d
in

g
an

im
at

ed
 v

er
si

o
n
 o

f
th

e
p
lo

t
is

 a
va

il
ab

le
 a

t
o
sf

.i
o
/t

j2
xr

.

http://osf.io/tj2xr

19

F
ig

.
1
6
.

Sc
re

en
sh

o
ts

 o
f
se

le
ct

ed
 f
ra

m
es

 o
f
th

e
an

im
at

ed
 s

ca
tt
er

 p
lo

t.
 P

lo
t
cr

ea
te

d
 w

it
h
 t
h
e

gg
a

n
im

a
te

 p
ac

k
ag

e.
 T

h
e

co
rr

es
p
o
n
d
in

g
an

im
at

ed
 v

er
si

o
n
 o

f
th

e
p
lo

t
is

 a
va

il
ab

le
 a

t
o
sf

.i
o
/t

j2
xr

.

http://osf.io/tj2xr

20 Wiebels, Moreau

intervention. This time, we use gganimate’s layer tran-
sition_reveal() to the ggplot2 code, which is typi-
cally used to gradually reveal time-series data:

Animated line graph (code
 snippet 32)

p_line_animated <-
 ggplot(intervention_data, aes(x =
 Week, y = Task, color = Group))+

 # Gray rectangle to highlight
 intervention phase

 annotate(
 “rect”,
 xmin = 4.5,
 xmax = 16.5,
 ymin = 0,
 ymax = Inf,
 alpha = 0.1,
 fill = “gray45”
) +
 # Label for rectangle
 annotate(
 geom = “text”,
 x = 10.5,
 y = max(intervention_data$Task) + 1,
 label = “Intervention”,
 size = 3.5,
 color = “gray35”
) +
 # Individual lines
 geom_line(aes(group = ID), size =
 .5, alpha = .15) +

 # Group average lines
 stat_summary(geom = “line”, fun =
 “mean”) +

 # Group average points
 stat_summary(geom = “point”, fun =
 “mean”) +

 ylab(“Task performance”) +
 custom_theme +
 theme(legend.position = “top”) +
 transition_reveal(Week)

Using Week inside transition_reveal() speci-
fies that the plot should be revealed along the weeks of
the intervention. Let us display the resulting animation:

Display animated line graph
 (code snippet 33)

animate(p_line_animated, fps = 6,
 end_pause = 40)

In addition to the pause of 40 frames at the end of
the animation, we specified that six frames per second
should be displayed (10 is the default). See the resulting
animation in Figure 17.

Instead of gradually revealing parts of the plot over
time, we can animate the ridgeline plot (see Fig. 5; code
snippet 13) so that the distributions dynamically shift
across the weeks of the intervention. This animation
style is similar to the animation of the scatter plot of the
future-imagination data set used earlier (code snippet
30), so we use gganimate’s transition_states()
layer again:

Animated ridgeline plot (code
 snippet 34)

p_ridge_anim <-
 ggplot(intervention_data, aes(
 x = Task,
 y = 0,
 color = Group,
 fill = Group
)) +
 geom_density_ridges(alpha = .4) +
 xlab(“Task Performance”) +
 custom_theme +
 theme(
 axis.title.y = element_blank(),
 axis.text.y = element_blank(),
 axis.ticks.y = element_blank(),
 axis.line.y = element_blank()
) +
 transition_states(Week, transition_
 length = 3, state_length = 0) +

 labs(title = “Week {closest_state}”)

In addition to the transition_states() layer,
we also added a title to the plot that indicates which
intervention week is being displayed (labs(title =
“Week {closest_state}”)), and we used the
theme() layer to indicate that we do not want to dis-
play a y-axis. Note that in the aes layer, we also set y
to 0.

After building the plot, let us use animate() to
display it and control animation-related options:

Display animated ridgeline plot
 (code snippet 35)

animate(p_ridge_anim, fps = 3,
 width = 500, height = 150, end_
 pause = 40)

21

F
ig

.
1
7
.

Sc
re

en
sh

o
ts

 o
f

se
le

ct
ed

 f
ra

m
es

 o
f

th
e

an
im

at
ed

 l
in

e
gr

ap
h
.

P
lo

t
cr

ea
te

d
 w

it
h
 t

h
e

gg
a

n
im

a
te

 p
ac

k
ag

e.
 T

h
e

co
rr

es
p
o
n
d
in

g
an

im
at

ed
 v

er
si

o
n
 o

f
th

e
p
lo

t
is

 a
va

il
ab

le
 a

t
o
sf

.i
o
/t

j2
xr

.

http://osf.io/tj2xr

22 Wiebels, Moreau

This time, we also specified the optional arguments
width and height to illustrate additional customiza-
tion options (see Fig. 18).

Beyond making the presentation of plots more visu-
ally appealing or more easily digestible during presenta-
tions, animations also allow us to examine and present
new aspects of our data, such as the evolution of the
intervention-data scatter plot (see Fig. 8; code snippet
16) over time. Similar to the previous example, we can
cycle through the weeks, constructing a separate correla-
tion plot for each week. Given that we already animated
a correlation plot and that we have used gganimate in
several different examples now, we use plotly this time
to showcase another way to create animations. With
plotly, a version of the static plot first needs to be recre-
ated, with the aesthetics argument frame added to
geom_point(), which specifies which dimension to
animate over (in our case, Week):

Animated scatter plot (code
 snippet 36)

p_scatter2_animated <-
 ggplot(intervention_data, aes(
 x = Alertness,
 y = Task,
 group = Group,
 color = Group
)) +
 # Individual points
 geom_point(aes(frame = Week), alpha =
 .6) +

 # Group trendlines
 geom_smooth(
 aes(frame = Week, ids = ID),
 method = “lm”,
 se = FALSE,
 fullrange = T
) +
 custom_theme

We can then use ggplotly() to animate and dis-
play the plot:

Animate and display the scatter
 plot (code snippet 37)

ggplotly(p_scatter2_animated)

Using the animated version of the scatter plot (see
Fig. 19), it becomes more easily apparent that the cor-
relation between task performance and alertness level
decreased across the intervention for the intervention
group but not to the same extent for the control group.

Make It Shine: Blending Interactive and
Animated Features

Once a project is complete, data and materials are often
shared alongside the article that describes the project
and presents its findings. Packaging these up into a
dashboard or web app for a project is a great way not
only to share additional material and let others recreate
plots and statistics from the article but also to allow for
additional exploration and manipulation of the data,
such as examining the effect of outliers or particular
modeling choices on the results. The R package shiny
makes building interactive dashboards and web apps
straightforward, without the need for web development
skills and deep knowledge of web technologies such as
HTML or CSS.

Extensive and detailed shiny tutorials are provided
elsewhere (see e.g., Shiny Learning Resources, n.d.;
Wickham, 2021). Briefly, Shiny apps are written in a
single R script called app.R, which consists of three
main components: a ui (user interface) object that con-
tains information about the layout of the app, a server
function that contains all code needed to build and
update the objects in the app, and a call to the shinyApp
function to build the app. As mentioned earlier, shiny
uses a programming style called reactive programming.
Reactive programming lets you control which parts of
your app update (i.e., which parts of your code are
rerun) and when using the inputs provided by the user.
For our purposes, the main reactive components are
reactive sources (defined as input in the ui object)
and reactive endpoints (defined as output in the
server function). A reactive endpoint can, for example,
be a plot that is rendered by shiny’s renderPlot()
function that is then displayed in the app using
plotOutput(). The code for the plot will be rerun
every time the input changes. When combining shiny
with any of the dynamic plotting packages used in this
tutorial, these endpoint functions have to be adapted to
their package-specific alternative. We provide an exam-
ple below.

To demonstrate some of Shiny’s features, we built a
Shiny app that includes dynamic plots for each of the
questions we addressed for the intervention-data-set
example (Example 2), additionally allowing for one or
several individuals to be excluded to check robustness
(see Fig. 20). For simplicity purposes, we provide instruc-
tions for a simplified version of this app below, which
displays just the interactive line graph created with
ggiraph but still allows for the exclusion of individuals
from the data set. Whenever we reuse code from earlier
parts of the tutorial, we use a placeholder, indicating
which code snippets should be inserted (e.g., # <Set
up custom theme – code snippet 3>). The full

23

F
ig

.
1
8
.

Sc
re

en
sh

o
ts

 o
f
se

le
ct

ed
 f
ra

m
es

 o
f
th

e
an

im
at

ed
 r

id
ge

p
lo

t.
 P

lo
t
cr

ea
te

d
 w

it
h
 t
h
e

gg
a

n
im

a
te

 p
ac

k
ag

e.
 T

h
e

co
rr

es
p
o
n
d
in

g
an

im
at

ed
 v

er
si

o
n
 o

f
th

e
p
lo

t
is

 a
va

il
ab

le
 a

t
o
sf

.i
o
/t

j2
xr

.

http://osf.io/tj2xr

24

F
ig

.
1
9
.

Sc
re

en
sh

o
ts

 o
f

se
le

ct
ed

 f
ra

m
es

 o
f

th
e

an
im

at
ed

 s
ca

tt
er

 p
lo

t.
 P

lo
t

cr
ea

te
d
 w

it
h
 t

h
e

pl
ot

ly
 p

ac
k
ag

e.
 T

h
e

co
rr

es
p
o
n
d
in

g
an

im
at

ed
 v

er
si

o
n
 o

f
th

e
p
lo

t
is

 a
va

il
ab

le
 a

t
o
sf

.i
o
/t

j2
xr

.

http://osf.io/tj2xr

Advances in Methods and Practices in Psychological Science 6(3) 25

Fig. 20. Screenshot of Shiny app with dynamic plots.

Shiny app is available at kwiebels.shinyapps.io/
Dynamic_Data_Visualizations, and the code for the sim-
plified and the full app is available at osf.io/fwy8j.

To start, create a new R script called app.R. Inside
this script, we first need to load and prepare packages
and data:

Shiny app preamble (code
 snippet 38)

Load packages
library(tidyverse)
library(shiny)
library(ggplot2)
library(ggiraph)

<Set up custom theme – code snippet
 3>

Load data
intervention_data <- read_
 csv(“intervention_study.csv”)
intervention_data$ID <- as.factor
 (intervention_data$ID)

Everything needed for the preamble has already been
covered in the tutorial, apart from the conversion of ID
into a factor, which is needed to allow the exclusion of

individuals from the data set. Next, let us add the ui
object to the script:

Shiny app ui object (code
snippet 39)

ui <- fluidPage(
 titlePanel(“Dynamic Data
 Visualizations”),

 sidebarLayout(
 sidebarPanel(
 radioButtons(
 inputId = “exclude_choice”,
 label = “Do you want to exclude

 any participants to check
 robustness?”,
 choices = list(“Yes”, “No”),
 selected = “No”
),
 conditionalPanel(
 condition = “input.exclude_

 choice == ‘Yes’”,
 selectInput(
 inputId = “exclude”,
 label = “Which participant(s) do

 you want to exclude?”,
 choices = levels(intervention_

 data$ID),

http://kwiebels.shinyapps.io/Dynamic_Data_Visualizations
http://kwiebels.shinyapps.io/Dynamic_Data_Visualizations
http://osf.io/fwy8j

26 Wiebels, Moreau

 multiple = TRUE
)
)
),

 mainPanel(girafeOutput(“plot_
 linegraph”))

)
)

In the ui object, we specify everything related to the
visual appearance of the app, including the title of the
app, the general layout, the options available to users
in the sidebar panel, and what should be displayed in
the main panel. Note that we had to replace shiny’s
reactive endpoint function plotOutput() with
ggiraph’s girafeOutput().

Next, we add the server function:

Shiny app server function (code
 snippet 40)

server <- function(input, output) {
 output$plot_linegraph
 <- renderGirafe({

 if (input$exclude_choice == “Yes”) {
 seq <- input$exclude
 intervention_data <-
 intervention_data[!

 (intervention_data$ID
 %in% seq),]

 }

 # <Interactive line graph – code
 snippet 22>

 # <Display interactive line graph –
 code snippet 23>

})
}

Only two things are required in the server function
for our app: removing data of excluded individuals (if
the user selects this option) and the code for the plot.
Note that, as in the previous code snippet, we had to
replace the shiny function renderPlot() with
ggiraph’s renderGirafe().

Finally, we need to add code to the end of the script
to build the app:

shinyApp function call (code
 snippet 41)

shinyApp(ui = ui, server = server)

Running this script will display the app (see Fig. 21).
The reactive endpoint functions for the other pack-

ages we used throughout this tutorial have to be changed
similarly to the ggiraph ones when used in Shiny apps.
For interactive and animated graphs with plotly, these
are changed to plotlyOutput() and render-
Plotly(). There are different options to display ani-
mations created with gganimate, one of which requires
the gif image to be saved into a temporary image with
renderImage() that can then be displayed in the app
using imageOutput(). Refer to the code for the full
version of the Shiny app for further details.

Discussion

In this tutorial, we described how to turn static figures
into interactive and animated content. We used the R
statistical language throughout and based our examples
on common types of plots and widely used packages.
The first part of the tutorial focused on building interac-
tive content, an aspect particularly important to early
stages of a scientific project, such as data exploration.
In the second part of the tutorial, we showed how to
animate plots, a useful feature for data communication
to scientific and general audiences. Finally, we integrated
these two components into a single Shiny app that let
us combine the flexibility of interactive graphs with the
visual appeal and conciseness of animations. These
richer modes of visualization can be ideal for sharing
findings, with prespecified features that can help users
explore key aspects of a study results. To conclude, we
provide a number of practical recommendations to help
researchers navigate use and implementation of dynamic
content into a research project and close with a few
remarks about prospective challenges and opportunities
in the field of psychology.

Practical recommendations

Fancier is not always better; sometimes, traditional, static
figures are the best way to convey information in a clear
and efficient manner (Bétrancourt & Tversky, 2000;
Lewalter, 2003). Because dynamic visualizations have a
cost—inasmuch as they represent additional time, effort,
and sometimes resources compared with more tradi-
tional visual displays—it may be difficult to gauge what
content to turn into interactive or animated displays and
when. Here, we provide five recommendations that we
hope can help guide the reader through this process.

Recommendation 1: understand
the specifics of your data

Given the variety of options now available to psycholo-
gists to present their research, understanding the type

Advances in Methods and Practices in Psychological Science 6(3) 27

of data that is to be displayed is key. If the data structure
is complex, multifaceted, or layered, interactivity can
often be valuable because it provides a tool to explore
different aspects sequentially or in combination with one
another (Ward et al., 2011). Animations can be especially
beneficial to represent phenomena that change over time
or processes that are being iterated over (Robertson et al.,
2008; Yu et al., 2010). In the case of low-dimensional data
or if the added features lead to an unnecessary cognitive
burden, the value of dynamic visualizations over that of
static displays might be less evident (Steele & Iliinsky,
2010).

Recommendation 2: know your
audience

Just like the data, the intended audience is also a crucial
element in deciding to use dynamic displays (Kennedy,
2012). Peers might value interactivity to be able to verify
assumptions, check alternative explanations, or explore
complementary findings. Animations might be better
suited to large, eclectic audiences who may not have the
time or expertise necessary to invest in active explora-
tion of the data. Students and trainees might benefit from
either or both of these features, depending on their
specific goals and needs.

Recommendation 3: adapt visualizations
to the current needs of the project

The requirements of a research project often differ across
its life cycle. Features that are key to data exploration

may not match those needed to discuss results with a
team of collaborators or to present findings to a larger
audience. Flexibility and creativity in the display of
visual content can facilitate insights, help convey infor-
mation in a more effective way, and make a presentation
more memorable.

Recommendation 4: complement journal
publication with online materials

In case journal platforms lack the capabilities to display
dynamic graphs, it is relatively straightforward to com-
plement the publication of an article with online materi-
als, for example, in the form of a repository that can
enable more sophisticated display. Tools such as Binder
(mybinder.org) or Stencila (stenci.la) can help turn a
static repository (e.g., from GitHub; github.com) into a
collection of interactive notebooks or executable docu-
ments. We also provide an example of a repository
including dynamic content with this article, hosted on
OSF (osf.io). Along with alternatives such as Dryad
(datadryad.org), FigShare (figshare.com), or Zenodo
(zenodo.org), OSF allows creating a persistent digital
object identifier for each submission, making reposito-
ries and their content easily citable.

Recommendation 5: consider packaging
research findings into a Shiny app

In many cases, articles can benefit from alternate modes
of presentation for the reported findings, which allow
active exploration of the results. For this, we recommend

Fig. 21. Screenshot of simplified version of Shiny app.

http://mybinder.org
http://stenci.la
http://github.com
http://osf.io
http://datadryad.org
http://figshare.com
http://zenodo.org

28 Wiebels, Moreau

Shiny apps, which are extremely flexible and easy to
implement in R. Exploring data with Shiny apps is espe-
cially relevant when results involve a large number of
variables, analyses are complex, or contributions are
methodological in nature, but the versatility of Shiny
apps makes them useful for almost any research project.
Having the possibility to interact with the data can
enhance understanding, engagement, and ultimately the
impact of a research project.

Concluding remarks

A vast literature indicates that when used appropriately,
dynamic visualizations can promote understanding and
retention of various scientific findings and concepts
(e.g., Ryoo & Linn, 2012; Suits & Sanger, 2013; Yang
et al., 2015). Not only can they facilitate conveying and
streamlining information at the time of publication, but
dynamic visualizations can also help communication
among team members at earlier stages of a project and
dissemination of findings via talks, conferences, and in
the media after publication. Furthermore, when projects
have the potential to be continuously updated—for
example, in the case of longitudinal studies or meta-
analyses (Braver et al., 2014)—figures that are based on
dynamic code can get updated automatically as new data
come in, thus ensuring the user has access to the latest,
up-to-date information.

In many ways, current publishing models pose a num-
ber of challenges to the implementation of this type of
content, and a number of journals and publishing plat-
forms are currently working toward developing ways to
enable more elaborate content (see e.g., Colomb &
Brembs, 2014; Penfold, 2017). The move toward more
sophisticated options for visual content is unquestion-
ably the future of scientific publishing, with preregistra-
tions, articles, code, and data hosted together to facilitate
evaluation and active exploration of a research project.
In the meantime, independent hosting platforms allow
moving beyond the traditional format of presentation
for scientific projects, and researchers should become
familiar with the possibilities and capabilities they afford.
We hope these developments will enable a more ubiq-
uitous use of dynamic visualizations to help further the
understanding of the complex, multifaceted relationships
that govern brains and behaviors.

Transparency

Action Editor: David A. Sbarra
Editor: David A. Sbarra
Author Contributions

Kristina Wiebels: Conceptualization; Data curation; For-
mal analysis; Investigation; Methodology; Project adminis-
tration; Resources; Software; Validation; Visualization;
Writing – original draft; Writing – review & editing.

David Moreau: Conceptualization; Data curation; Formal
analysis; Investigation; Methodology; Project administration;
Resources; Software; Validation; Visualization; Writing –
original draft; Writing – review & editing.

Declaration of Conflicting Interests
The author(s) declared that there were no conflicts of inter-
est with respect to the authorship or the publication of this
article.

Funding
D. Moreau and K. Wiebels are supported by a Marsden
grant from the Royal Society of New Zealand and a Univer-
sity of Auckland Early Career Research Excellence Award
awarded to D. Moreau.

Open Practices
This article has received the badges for Open Data and
Open Materials. More information about the Open Practices
badges can be found at http://www.psychologicalscience
.org/publications/badges.

ORCID IDs

Kristina Wiebels https://orcid.org/0000-0002-5360-5965
David Moreau https://orcid.org/0000-0002-1957-1941

Notes

1. At the time of writing, the talk had received a combined 20
million views across TED and YouTube platforms.
2. See, for example, Carbon Dioxide (n.d.) and Center for Systems
Science and Engineering Johns Hopkins University (n.d.).
3. Note that many alternatives exist outside the R language, such
as D3.js (https://d3js.org/), dimple (http://dimplejs.org/), Vega
(https://vega.github.io/vega/), Tableau (https://www.tableau
.com/resource/data-visualization), or Google’s Visualization
API (https://developers.google.com/chart/interactive/docs/refer
ence). Most of these alternatives provide functionalities above
and beyond those available in R and thus may be attractive to
users who plan on using dynamic data visualizations exten-
sively and across a number of media (e.g., website, educational
resources). However, because they typically require program-
ming knowledge beyond what is assumed in this tutorial, we
focus on implementations in R.
4. The use of ggiraph or plotly for interactive data visualizations
depends largely on personal preference. ggiraph is often thought
to be more straightforward to implement, especially for ggplot2
users, whereas plotly has a number of additional functionalities
that can be advantageous in specific circumstances (e.g., toolbar
to hide parts of a plot, zooming feature). Here, we present the
two alternatives because both are extremely popular and being
actively developed, with new features and functionalities being
released regularly.

References

Allen, E. A., Erhardt, E. B., & Calhoun, V. D. (2012). Data
visualization in the neurosciences: Overcoming the curse
of dimensionality. Neuron, 74(4), 603–608. https://doi
.org/10.1016/j.neuron.2012.05.001

Bétrancourt, M., & Tversky, B. (2000). Effect of computer
animation on users’ performance: A review. Le Travail
Humain, 63(4), 311–329.

http://www.psychologicalscience.org/publications/badges
http://www.psychologicalscience.org/publications/badges
https://orcid.org/0000-0002-5360-5965
https://orcid.org/0000-0002-1957-1941
https://d3js.org/
http://dimplejs.org/
https://vega.github.io/vega/
https://www.tableau.com/resource/data-visualization
https://www.tableau.com/resource/data-visualization
https://developers.google.com/chart/interactive/docs/reference
https://developers.google.com/chart/interactive/docs/reference
https://doi.org/10.1016/j.neuron.2012.05.001
https://doi.org/10.1016/j.neuron.2012.05.001

Advances in Methods and Practices in Psychological Science 6(3) 29

Blok, C. A. (2005). Dynamic visualization variables in ani-
mation to support monitoring of spatial phenomena.
Netherlands Geographical Studies.

Borland, D., & Taylor, M. R., II. (2007). Rainbow color map
(still) considered harmful. IEEE Computer Graphics and
Applications, 27(2), 14–17.

Braver, S. L., Thoemmes, F. J., & Rosenthal, R. (2014). Continuously
cumulating meta-analysis and replicability. Perspectives on
Psychological Science, 9(3), 333–342.

Carbon dioxide. (n.d.). https://climate.nasa.gov/vital-signs/
carbon-dioxide/

Chang, W., Cheng, J., Allaire, J. J., Sievert, C., Schloerke, B.,
Xie, Y., Allen, J., McPherson, J., Dipert, A., & Borges, B.
(2022). Shiny: Web application framework for R. https://
CRAN.R-project.org/package=shiny

Colomb, J., & Brembs, B. (2014). Sub-strains of Drosophila
Canton-S differ markedly in their locomotor behavior.
F1000Research, 3, Article 176. https://doi.org/10.12688/
f1000research.4263.2

Cordero, R. J. B., de León-Rodriguez, C. M., Alvarado-Torres,
J. K., Rodriguez, A. R., & Casadevall, A. (2016). Life sci-
ence’s average publishable unit (APU) has increased over
the past two decades. PLOS ONE, 11(6), Article e0156983
https://doi.org/10.1371/journal.pone.0156983

Center for Systems Science and Engineering (CSSE) at Johns
Hopkins University (JHU). (n.d.). COVID-19 dashboard.
https://www.arcgis.com/apps/opsdashboard/index.html#/
bda7594740fd40299423467b48e9ecf6

Deploying Shiny apps to the web. (2017). https://shiny.rstudio
.com/articles/deployment-web.html

Doumont, J., & Vandenbroeck, P. (2002). Choosing the right
graph. IEEE Transactions on Professional Communication,
45(1), 1–6.

Fawcett, L. (2018). Using interactive shiny applications to facili-
tate research-informed learning and teaching. Journal of
Statistics Education, 26(1), 2–16.

Few, S. (2004). Show me the numbers. Analytics Press.
Friendly, M. (2008). A brief history of data visualization. In

C.-H. Chen, W. Härdle, & A. Unwin (Eds.), Handbook of
data visualization (pp. 15–56). Springer.

Gohel, D., & Skintzos, P. (2022). Ggiraph: Make “ggplot2”
graphics interactive. https://CRAN.R-project.org/package=
ggiraph

Gohel, D., & Skintzos, P. (2023). Ggiraph: Make ‘ggplot2’
graphics interactive. R package version 0.8.7. https://david
gohel.github.io/ggiraph/

Isenberg, P., Elmqvist, N., Scholtz, J., Cernea, D., Ma,
K.-L., & Hagen, H. (2011). Collaborative visualization:
Definition, challenges, and research agenda. Information
Visualization, 10(4), 310–326.

Kamath, C. (2001). On mining scientific datasets. In R. L.
Grossman, C. Kamath, P. Kegelmeyer, V. Kumar, & R. R.
Namburu (Eds.), Data mining for scientific and engineer-
ing applications (pp. 1–21). Springer.

Kelleher, C., & Wagener, T. (2011). Ten guidelines for effective
data visualization in scientific publications. Environmental
Modelling & Software, 26(6), 822–827.

Kennedy, S. J. (2012). Transforming big data into knowl-
edge: Experimental techniques in dynamic visualization.

Massachusetts Institute of Technololgy. http://hdl.handle
.net/1721.1/73818

Kerren, A., & Stasko, J. T. (2002). Algorithm animation. In
S. Diehl (Ed.), Software visualization (pp. 1–15). Springer.

Lewalter, D. (2003). Cognitive strategies for learning from static
and dynamic visuals. Learning and Instruction, 13(2),
177–189.

Midway, S. R. (2020). Principles of effective data visualization.
Patterns, 1(9), Article 100141. https://doi.org/10.1016/
j.patter.2020.100141

Moreau, D. (2015). When seeing is learning: Dynamic and inter-
active visualizations to teach statistical concepts. Frontiers
in Psychology, 6, Article 342. https://doi.org/10.3389/
fpsyg.2015.00342

Newman, G. E., & Scholl, B. J. (2012). Bar graphs depicting
averages are perceptually misinterpreted: The within-the-
bar bias. Psychonomic Bulletin & Review, 19(4), 601–607.

Nordmann, E., McAleer, P., Toivo, W., Paterson, H., & DeBruine,
L. M. (2021). Data visualisation using R, for researchers
who don’t use R. PsyArXiv. https://doi.org/10.31234/osf.io/
4huvw

Ospina, R., Larangeiras, A. M., & Frery, A. C. (2014).
Visualization of skewed data. Revista Colombiana de
Estadistica, 37(2Spe), 399–417.

Pedersen, T. L., & Robinson, D. (n.d.). Control easing of aes-
thetics. https://gganimate.com/reference/ease_aes.html

Pedersen, T. L., & Robinson, D. (2020). Gganimate: A gram-
mar of animated graphics. https://CRAN.R-project.org/
package=gganimate

Pedersen, T L., & Robinson, D. (2022). Gganimate: A gram-
mar of animated graphics. https://github.com/thomasp85/
gganimate.

Penfold, N. (2017). Reproducible Document Stack – Suppor-
ting the next-generation research article. eLife Sciences
Publications Limited. https://elifesciences.org/labs/
7dbeb390/reproducible-document-stack-supporting-the-
next-generation-research-article

Plotly R open source graphing library. (n.d.). https://plotly.com/r
R Core Team. (2020). R: A language and environment for sta-

tistical computing. R Foundation for Statistical Computing.
https://www.R-project.org/

Robertson, G., Fernandez, R., Fisher, D., Lee, B., & Stasko, J.
(2008). Effectiveness of animation in trend visualiza-
tion. IEEE Transactions on Visualization and Computer
Graphics, 14(6), 1325–1332.

Rolfes, T., Roth, J., & Schnotz, W. (2020). Learning the concept of
function with dynamic visualizations. Frontiers in Psychology,
11, Article 693. https://doi.org/10.3389/fpsyg.2020.00693

Rosling, H. (2006). The best stats you’ve ever seen [Video]. TED.
https://www.ted.com/talks/hans_rosling_the_best_stats_
you_ve_ever_seen

Rougier, N. P., Droettboom, M., & Bourne, P. E. (2014).
Ten simple rules for better figures. PLOS Computational
Biology, 10(9), Article e1003833. https://doi.org/10.1371/
journal.pcbi.1003833

Rstudio Team. (2020). Rstudio: Integrated development environ-
ment for R. Rstudio, Inc. http://www.rstudio.com/

Ryoo, K., & Linn, M. C. (2012). Can dynamic visualizations
improve middle school students’ understanding of energy

https://climate.nasa.gov/vital-signs/carbon-dioxide/
https://climate.nasa.gov/vital-signs/carbon-dioxide/
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
https://doi.org/10.12688/f1000research.4263.2
https://doi.org/10.12688/f1000research.4263.2
https://doi.org/10.1371/journal.pone.0156983
https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
https://shiny.rstudio.com/articles/deployment-web.html
https://shiny.rstudio.com/articles/deployment-web.html
https://CRAN.R-project.org/package=ggiraph
https://CRAN.R-project.org/package=ggiraph
https://davidgohel.github.io/ggiraph/
https://davidgohel.github.io/ggiraph/
http://hdl.handle.net/1721.1/73818
http://hdl.handle.net/1721.1/73818
https://doi.org/10.1016/j.patter.2020.100141
https://doi.org/10.1016/j.patter.2020.100141
https://doi.org/10.3389/fpsyg.2015.00342
https://doi.org/10.3389/fpsyg.2015.00342
https://doi.org/10.31234/osf.io/4huvw
https://doi.org/10.31234/osf.io/4huvw
https://gganimate.com/reference/ease_aes.html
https://CRAN.R-project.org/package=gganimate
https://CRAN.R-project.org/package=gganimate
https://github.com/thomasp85/gganimate
https://github.com/thomasp85/gganimate
https://elifesciences.org/labs/7dbeb390/reproducible-document-stack-supporting-the-next-generation-research-article
https://elifesciences.org/labs/7dbeb390/reproducible-document-stack-supporting-the-next-generation-research-article
https://elifesciences.org/labs/7dbeb390/reproducible-document-stack-supporting-the-next-generation-research-article
https://plotly.com/r
https://www.R-project.org/
https://doi.org/10.3389/fpsyg.2020.00693
https://www.ted.com/talks/hans_rosling_the_best_stats_you_ve_ever_seen
https://www.ted.com/talks/hans_rosling_the_best_stats_you_ve_ever_seen
https://doi.org/10.1371/journal.pcbi.1003833
https://doi.org/10.1371/journal.pcbi.1003833
http://www.rstudio.com/

30 Wiebels, Moreau

in photosynthesis? Journal of Research in Science Teaching,
49(2), 218–243.

Sharing apps to run locally. (2014). https://shiny.rstudio.com/
articles/deployment-local.html

Shiny learning resources. (n.d.). https://shiny.rstudio.com/
tutorial/

Sievert, C. (2020). Interactive web-based data visualization
with R, plotly, and shiny. Chapman and Hall/CRC.

Steele, J., & Iliinsky, N. (2010). Beautiful visualization: Looking
at data through the eyes of experts. O’Reilly Media, Inc.

Suits, J. P., & Sanger, M. J. (2013). Dynamic visualizations
in chemistry courses. In J. P. Suits & M. J. Sanger (Eds.),
Pedagogic roles of animations and simulations in chemistry
courses (Vol. 1142, pp. 1–13). American Chemical Society.

Ushey, K. (2021). Renv: Project environments. https://CRAN.R-
project.org/package=renv

Ward, M. O., Grinstein, G., & Keim, D. (2011). Interactive data
visualization. A K Peters/CRC Press.

Weiss, R. E., Knowlton, D. S., & Morrison, G. R. (2002). Principles
for using animation in computer-based instruction: Theoretical
heuristics for effective design. Computers in Human Behavior,
18(4), 465–477.

Weissgerber, T. L., Milic, N. M., Winham, S. J., & Garovic, V. D.
(2015). Beyond bar and line graphs: Time for a new
data presentation paradigm. PLOS Biology, 13(4), Article
e1002128. https://doi.org/10.1371/journal.pbio.1002128

Wickham, H. (2016). Ggplot2: Elegant graphics for data analy-
sis. Springer-Verlag.

Wickham, H. (2021). Mastering Shiny. O’Reilly Media.
Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi,

K., Wilke, C., Woo, K., Yutani, H., & Dunnington, D. (n.d.).
Complete themes. https://ggplot2.tidyverse.org/reference/
ggtheme.html#ref-usage

Wiebels, K., Addis, D. R., Moreau, D., van Mulukom, V.,
Onderdijk, K. E., & Roberts, R. P. (2020). Relational pro-
cessing demands and the role of spatial context in the con-
struction of episodic simulations. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 46(8),
1424–1441. https://doi.org/10.1037/xlm0000831

Wiebels, K., & Moreau, D. (2021). Leveraging containers for
reproducible psychological research. Advances in Methods
and Practices in Psychological Science, 4(2). https://doi
.org/10.1177/25152459211017853

Xie, Y. (2013). Animation: An R package for creating anima-
tions and demonstrating statistical methods. Journal of
Statistical Software, 53(1), 1–27. https://doi.org/10.18637/
jss.v053.i0

Yang, J., Lee, Y., Hicks, D., & Chang, K. H. (2015). Enhancing
object-oriented programming education using static and
dynamic visualization. In 2015 IEEE Frontiers in educa-
tion conference (FIE). IEEE. https://doi.org/10.1109/
FIE.2015.7344152

Yu, L., Lu, A., Ribarsky, W., & Chen, W. (2010). Automatic anima-
tion for time-varying data visualization. Computer Graphics
Forum, 29(7), 2271–2280. https://doi.org/10.1111/j.1467-
8659.2010.01816.x

https://shiny.rstudio.com/articles/deployment-local.html
https://shiny.rstudio.com/articles/deployment-local.html
https://shiny.rstudio.com/tutorial/
https://shiny.rstudio.com/tutorial/
https://CRAN.R-project.org/package=renv
https://CRAN.R-project.org/package=renv
https://doi.org/10.1371/journal.pbio.1002128
https://ggplot2.tidyverse.org/reference/ggtheme.html#ref-usage
https://ggplot2.tidyverse.org/reference/ggtheme.html#ref-usage
https://doi.org/10.1037/xlm0000831
https://doi.org/10.1177/25152459211017853
https://doi.org/10.1177/25152459211017853
https://doi.org/10.18637/jss.v053.i0
https://doi.org/10.18637/jss.v053.i0
https://doi.org/10.1109/FIE.2015.7344152
https://doi.org/10.1109/FIE.2015.7344152
https://doi.org/10.1111/j.1467-8659.2010.01816.x
https://doi.org/10.1111/j.1467-8659.2010.01816.x

