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Tutorial

Effective data visualization is one of the cornerstones of 
clear scientific communication (Friendly, 2008). Numer-
ous guidelines have been written about what makes for 
good data visualization, from choosing the right type of 
graph (Doumont & Vandenbroeck, 2002) to using color 
wisely (Borland & Taylor, 2007) and adapting to one’s 
intended audience (Rougier et al., 2014). Other recom-
mendations have emphasized transparency in displaying 
statistical results, for example, with a shift from the once-
ubiquitous bar plots to more comprehensive graphs that 
include various distribution properties (Allen et al., 2012; 
Newman & Scholl, 2012; Weissgerber et al., 2015).

Recent increases in data complexity and software 
capabilities have paved the way for more sophisticated 
ways of presenting findings. This is especially visible in 
popular scientific communication, in which a specific 
mode of presentation—dynamic data visualizations—has 
flourished. With a blend of animated and interactive 
features, dynamic data visualizations can be found in 

the classroom (Fawcett, 2018; Moreau, 2015), the news 
media (e.g., The New York Times), information campaigns 
by nonprofit organizations (e.g., Our World in Data), 
and TED talks. Many readers1 would have seen Hans 
Rosling’s most popular talk, The Best Stats You’ve Ever 
Seen (Rosling, 2006), in which he introduced multifac-
eted data in an easily digestible way using pointed ani-
mations to direct the audience’s attention and stress 
important information. The dynamic style of Rosling’s 
presentation has since gained traction, and many writers 
and speakers from academia to government and industry 
have embraced the trend. Clear, powerful visualizations 
have become especially important given the growing 
need to accurately inform populations about high-stake 
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problems that require collective action, such as global 
warming or pandemics.2

Despite these recent advances, dynamic data visual-
izations remain underused in the communication of find-
ings among scientists, for a number of reasons. First, 
scientists have historically relied on print-only journals 
to disseminate their findings, and many of the current 
practices are based on obsolete standards—in the tradi-
tional publishing system, figures had to be static to be 
rendered in print. Second, dynamic visualizations can 
be challenging to describe accurately given that captions 
need to capture a vast number of frames or relationships 
between numerous potential variables, especially in rich 
data sets. In contrast, figures and graphs in peer-reviewed 
journals often present a snapshot of the findings, with 
the goal to portray the most important or most impres-
sive findings. Finally, a number of recommendations 
have been made to improve plots and figures in scientific 
publications (Kelleher & Wagener, 2011), and these have 
often emphasized simplicity over seemingly more 
advanced, but perhaps less accessible, renderings (e.g., 
three-dimensional plots). Given these potential limita-
tions, we first present the rationale for using dynamic 
visualizations in scientific projects.

The Case for Dynamic Visualizations

Effective data visualizations often rely on clarity and sim-
plicity (Few, 2004; Kelleher & Wagener, 2011; Midway, 
2020), yet scientific data have become increasingly com-
plex over the last few decades (Cordero et  al., 2016; 
Kamath, 2001). One key feature of effective dynamic data 
visualizations is their ability to pack rich information into 
relatively simple displays (Blok, 2005) via two compo-
nents that can be found in most recent, eye-catching 
content: interactivity and animation.

Interactive content enables active exploration of data 
features, for example, by selecting a subset of observa-
tions, focusing on specific variables, or displaying par-
ticular values or statistics on data-point mouse-overs. 
Interactivity may help with collaborative data exploration 
(Isenberg et  al., 2011); for example, a team member 
might have questions about the impact of particular ana-
lytic choices, such as the influence of an outlier on a 
model or statistic. Because new visualizations need to be 
created to explore each question, this type of conversa-
tion might typically result in back-and-forth communica-
tion over days or weeks and because of delays inherent 
to this process, in fewer research questions being 
explored altogether. Interactive visualizations provide an 
easy way to address queries in an immediate manner 
without the need for additional visualizations and thus 
can greatly streamline this process. In many cases, inter-
activity can also provide the means to transparently 

disclose the impact of analytical choices in statistical 
analysis (Ospina et al., 2014) and could serve as a valu-
able tool to teach statistical concepts to trainees (Xie, 
2013).

In contrast to interactive plots, in which the user is 
actively exploring variables and relationships to better 
understand the data at hand and their inherent features, 
animations are built to be consumed passively. Animated 
content is content that is dynamic either across time—for 
example, showing the relationship between variables 
across hours, days, or years—or across iterations of another 
variable (e.g., participants, experimental conditions, algo-
rithms). This type of visualization can be particularly use-
ful when presenting variable change (Weiss et al., 2002), 
illustrating computational algorithms and their outcomes 
(Kerren & Stasko, 2002), or displaying the results of simu-
lations (Moreau, 2015). The key component is that the 
variable that is being iterated over does not need to be 
displayed as another dimension with an additional axis 
(e.g., three-dimensional plot) or with another plot alto-
gether for each value (i.e., faceting). Rather, the relation-
ship is implicitly and effortlessly inferred from the natural 
flow of the animation, with the user being introduced to 
additional content in a passive manner (Rolfes et al., 2020).

In this tutorial, we show how to convert static plots 
into dynamic ones in the R language (R Core Team, 
2020).3 With various options and implementations, we 
first discuss how to build interactivity into scientific 
plots—a feature especially interesting at the exploration 
stage of a project, for example, to discover relationships 
among variables. We then focus on animations, or how 
to transition from static to live figures, a property par-
ticularly useful for the presentation of findings. Finally, 
we propose to combine interactive and animated fea-
tures via Shiny apps that can be personalized depending 
on individual needs and preferences. Blending interac-
tive and animated features facilitates the dissemination 
of findings in the scientific community in a transparent 
and user-friendly way.

Disclosures

All materials (data, scripts) of this tutorial can be found 
at osf.io/fwy8j. The OSF repository includes an RMark-
down file with all code that is used in this tutorial, the 
corresponding html file including all dynamic figures, 
code for two Shiny apps (one full, one simplified ver-
sion), and two data sets. We designed this tutorial to be 
accessible to novices, but we do assume basic knowl-
edge of R and ggplot2 (Wickham, 2016). For researchers 
who are not familiar with R and its ggplot2 visualization 
capabilities, see Nordmann et al. (2021). Familiarity with 
shiny (Chang et al., 2022) is helpful for the final section 
of this tutorial but not necessary.

http://osf.io/fwy8j
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R Packages Enabling Dynamic Content

In the last few years, several R packages have been cre-
ated that can be used to make plots either interactive, 
animated, or both. In this tutorial, we use the following 
packages: ggiraph (Gohel & Skintzos, 2022), gganimate 
(Pedersen & Robinson, 2020), plotly (Sievert, 2020), and 
shiny (Chang et al., 2022). Note that although for each 
example used in this tutorial we picked one package to 
add dynamic content, in most cases, at least one of the 
other packages can be used to get a similar result. We 
provide a reproducible environment with the renv pack-
age (Ushey, 2021), which allows restoring the state of 
this project from the renv.lock file provided at osf.io/
fwy8j. For a more extensive discussion of reproducible 
computational environments using R, see Wiebels and 
Moreau (2021).

ggiraph and gganimate are packages built on top of 
ggplot2. ggiraph enables interactive content by adding 
tool tips, hover effects, and JavaScript actions to static 
plots via adapted geoms, such as geom_point_
interactive() instead of geom_point(), together 
with the aesthetics tooltip, data_id, and onclick. 
gganimate focuses on animations instead of interactivity. 
In contrast to ggiraph, the geom layers remain unchanged; 
instead, gganimate introduces a variety of new grammar 
classes, such as transition_states() and tran 
sition_time(), that are added to static plots to spec-
ify how a plot should change with time. Animated plots 
can be rendered in Markdown or saved in several file 
formats, including gif images and a variety of video 
formats. For more information, see Gohel (2023) and 
Pederson and Robinson (2022).

Plotly is a computing company that provides visual-
ization tools and products for a variety of programming 
languages, including R, Python, and Julia. The R package 
plotly can be used to create interactive and animated 
content and does so via its JavaScript graphing library, 
plotly.js. The plots can be created using either stand-
alone code or the ggplotly() wrapper function, 
which takes a ggplot object, extracts all features, and 
redraws it with plotly.js. For more information on plotly, 
see Plotly R Open Source Graphing Library (n.d.).4

Finally, shiny allows building interactive apps that can 
be deployed locally (Sharing Apps to Run Locally, 2014) 
or on the web (Deploying Shiny Apps to the Web, 2017), 
be embedded in RMarkdown documents, or used to 
build dashboards. shiny provides user interface functions 
that convert R code into the HTML, CSS, and JavaScript 
functions necessary for the web content and a style of 
programming called “reactive programming,” which 
keeps track of dependencies and automatically updates 
the code when any input changes. shiny can be used by 
itself to make content interactive, or it can be combined 

with other packages that enable dynamic visualization. 
For more information, see https://shiny.rstudio.com.

Preparations

To follow this tutorial, you will need to have R installed 
on your computer. If you do not have R installed and want 
to install it locally, follow the instructions at r-project.org. 
We recommend using RStudio (RStudio Team, 2020), an 
integrated development environment for the R language, 
which can be downloaded from rstudio.com.

Before starting the tutorial, download the data files 
(imagination_study.csv and intervention_
study.csv) from osf.io/fwy8j to a chosen location on 
your computer. These files contain data from a published 
study on future imagination and a simulated interven-
tion-study data set, respectively. Open RStudio, go to the 
folder of the downloaded files, and create a new R 
Script. Alternatively, you can download the RMarkdown 
file from the OSF repository (DynamicVisualiza 
tions.Rmd) and simply follow and execute the code 
that is contained within.

Before creating any plots, you need to install and load 
the packages needed for this tutorial. A note for Mac 
users: XQuartz needs to be available on your computer 
for the ggiraph install to succeed (you can download 
the software from https://www.xquartz.org/). Install the 
packages that you do not have on your computer yet:

# Install packages    (code  
 snippet 1)

install.packages(“knitr”) # needed  
 for knitting RMarkdown files
install.packages(“tidyverse”)
install.packages(“ggridges”)
install.packages(“ggiraph”)
install.packages(“gganimate”)
install.packages(“plotly”)
install.packages(“shiny”)
install.packages(“transformr”) #  
 needed for gganimate
install.packages(“gifski) # needed  
 for rendering gganimate plots

We use some tidyverse functions to manipulate the 
data sets and ggplot2 (which is part of the tidyverse) and 
ggridges to build the static plots. All other packages are 
used to create dynamic content. In case you encounter 
any issues with the installation of these packages, we 
provide a reproducible environment that contains all 
packages and their versions. To make use of this envi-
ronment, download the renv.lock file from osf.io/fwy8j, 

http://osf.io/fwy8j
http://osf.io/fwy8j
https://shiny.rstudio.com
http://r-project.org
http://rstudio.com
https://www.xquartz.org/
http://osf.io/fwy8j
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install renv (install.packages(“renv”)), and 
then use the command renv::restore().

Once all packages have successfully installed, you 
can load them:

# Load packages     (code snippet 2)

library(tidyverse)
library(ggridges)
library(ggiraph)
library(gganimate)
library(plotly)
library(shiny)
library(transformr)
library(gifski)

We also set up a custom theme for the plots so that 
we do not have to add these specifications to every single 
plot:

# Set up custom theme     (code  
 snippet 3)

custom_theme <-
 list(theme_classic(),
   scale_color_manual(
     values = c(“#eeaa7b”,  

 “#66b9bf”, “#94618e”)),
   scale_fill_manual( 
     values = c(“#eeaa7b”,  

 “#66b9bf”, “#94618e”)))

This code chunk specifies that we want to use the 
classic ggplot2 theme (for an overview of available 
themes, see Wickham et al., n.d.) and three colors we 
use to differentiate between the conditions/groups in 
our data sets.

Finally, we need to load the data:

# Load data    (code snippet 4)

imagination_data <- read_csv 
 (“imagination_study.csv”)
intervention_data <- read_csv 
 (“intervention_study.csv”)

Example 1: future-imagination data set

The future-imagination data set is a subset of a published 
study on phenomenological differences between imagin-
ing future events relative to remembering past events 
(Wiebels et  al., 2020; details can be found at osf.io/
xqm5n/). Twenty participants remembered personal past 
events and imagined possible future events. The time it 
took to bring these events to mind was measured using 
button-press response times, and participants recorded 

in how much detail they remembered/imagined these 
events. Each past and future event was brought to mind 
three times during the experiment to test how response 
times and detail ratings changed across time points.

Let us have a look at the data:

# Inspect data    (code snippet 5)

imagination_data

Time_point in this data set is a factor, but we can 
see that it was read in as a numerical variable, so we 
need to change its class before we start:

# Convert Time_point into  
 factor    (code snippet 6)

imagination_data$Time_point <-
  as.factor(imagination_data$Time_ 
 point)

Using this data set, the plots we create throughout 
this tutorial address the following research questions:

Research Question 1: Does it take longer to imagine 
future events compared with remembering past 
events?

Research Question 2: Do future events become faster 
to imagine with repetition?

Research Question 3: Can we predict how long it takes 
people to imagine future events based on how fast 
they remember past events?

Example 2: intervention data set

The second data set is a simulated study comprising data 
from 40 participants—20 in each of two groups (inter-
vention and control groups)—with measurements taken 
once a week for the duration of 20 weeks. The interven-
tion took place from Week 5 to Week 16, so the data set 
includes a 4-week baseline and a 4-week post intervention 
phase. There are two outcome variables: performance 
on a task that is targeted by the intervention and alert-
ness level on the days of testing.

Let us look at the structure of this data set:

# Inspect data    (code snippet 7)

intervention_data

Using this data set, we create plots that address the 
following research questions:

Research Question 4: How does performance on the 
task change over time?

http://osf.io/xqm5n/
http://osf.io/xqm5n/
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Research Question 5: Does the intervention elicit dif-
ferences in performance between the groups?

Research Question 6: Can people’s performance on 
the task be predicted from their alertness level?

All questions for this tutorial have been designed to 
illustrate the potential and the advantages of dynamic 
visualizations. In the remainder of this section, we pro-
vide static plots that could be used to explore these six 
questions. In the following sections, we then demon-
strate how interactive or animated features can be added 
to create dynamic visualizations.

Static Plots

Example 1: future-imagination data set

Research Question 1: Does it take longer to imagine 
future events compared with remembering past events?

To address the first question, we construct a violin plot 
showing response times for remembering past and imag-
ining future events. We also display box plots and indi-
vidual data points within the violins.

#  Static violin plot    (code  
 snippet 8)

# For this plot, we are only using  
 data from time point 1
# and we reverse the factor levels of  
 Condition
# so that the past condition is on  
 the left hand side
ggplot(imagination_data %>%  
 filter(Time_point == 1),
    aes(x = fct_rev(Condition), y =  

 RT)) +
 # Violins
  geom_violin(trim = FALSE, alpha =  
 0.6, aes(fill = Condition)) +

 # Boxes
 geom_boxplot(width = 0.1) +
 # Individual data points
 geom_point(alpha = .4) +
 xlab(“Condition”) +
 ylab(“Response time (ms)”) +
 custom_theme +
 theme(legend.position = “none”)

We can see in the resulting Figure 1 that novel future 
events take longer to bring to mind than past events.

Research Question 2: Do future events become faster 
to imagine with repetition?

To address the second question, we construct a violin 
plot with boxes and individual data points again, this 
time only for the future events, but for each time point 
separately. We also connect the individual data points 
with lines to highlight each person’s change in response 
time across time points.

# Static violin plot with lines    
 (code snippet 9)

# For this plot, we are only using  
 data from the future condition
ggplot(imagination_data %>%  
 filter(Condition == “Future”),
   aes(x = Time_point, y = RT)) +
 # Violins
  geom_violin(trim = FALSE, alpha =  
 0.6, fill = “#94618e”) +

 # Boxes
 geom_boxplot(width = 0.1) +
 # Individual data points
 geom_point(alpha = .4) +
 # Individual lines
  geom_line(aes(group = ID), alpha =  
 .2, linetype = “dashed”) +

 xlab(“Time point”) +
 ylab(“Response time (ms)”) +
 custom_theme

Figure 2 shows that future events are brought to mind 
faster when they are imagined a second/third time. This 
effect is very consistent across people, as indicated by 
the dashed lines.

Research Question 3: Can we predict how long it takes 
people to imagine future events based on how fast 
they remember past events?
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Fig. 1. Violin plot displaying response times for remembering past 
events and imagining future events.
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For the last question on this data set, we construct a 
scatter plot with a trend line for each time point. The 
sizes of the points correspond to the mean detail rating 
made by each person for these events. Before we create 
this plot, we create a wider version of this data set to 
have separate columns for the response times in the 
future and past conditions, respectively. We also com-
pute mean detail ratings.

# Create wide version and means of  
 dataset   (code snippet 10)

imagination_data_wide <- imagination_ 
 data %>%

  pivot_wider(names_from = Condition,  
 values_from = c(RT, Detail))

imagination_data_wide$Detail_Mean <-
  rowMeans(imagination_data_wide 
 [, 5:6])

Using this data set, let us create the scatter plot:

#  Static scatter plot    (code  
snippet 11)

ggplot(imagination_data_wide,
     aes(x = RT_Past, y = RT_Future,  

 color = Time_point)) +
 # Individual points
  geom_point(alpha = .4, aes(size =  
 Detail_Mean)) +

 # Trendlines
 geom_smooth(method = “lm”) +
 # Distributions
 geom_rug(alpha = .4) +
 xlab(“Response time past (ms)”) +
 ylab(“Response time future (ms)”) +
 custom_theme +
  guides(color = guide_legend(title =  
 “Time point”),

    size = guide_legend(title =  
 “Detail rating”))

Figure 3 shows that past and future response times 
are positively correlated for all three time points.
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Fig. 2. Violin plot displaying response times for imagining future 
events across time points.
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Example 2: intervention data set

Research Question 4: How does performance on the 
task change over time?

To address the first question for this data set, we con-
struct a line graph. Two bold lines in Figure 4 indicate 
group-average performance to see whether task perfor-
mance might differ between groups. In addition, we 
display each person’s individual performance.

# Static line graph    (code  
 snippet 12)

ggplot(intervention_data, aes(x =  
 Week, y = Task, color = Group)) +

  # Gray rectangle to highlight  
 intervention phase

 annotate(
  “rect”,
  xmin = 4.5,
  xmax = 16.5,
  ymin = 0,
  ymax = Inf,
  alpha = 0.1,
  fill = “gray45”
 ) +
 # Label for rectangle
 annotate(
  geom = “text”,
  x = 10.5,
  y = max(intervention_data$Task) + 1,
  label = “Intervention”,
  size = 3.5,
  color = “gray35”
 ) +
 # Individual lines
  geom_line(aes(group = ID), size =  
 .5, alpha = .15) +

 # Group average lines
  stat_summary(geom = “line”, fun =  
 “mean”) +

 # Group average points
  stat_summary(geom = “point”, fun =  
 “mean”) +

 ylab(“Task performance”) +
 custom_theme +
 theme(legend.position = “top”)

Figure 4 shows that performance on the task remained 
relatively stable across the 20 weeks for the control 
group, whereas performance gradually improved from 
shortly after the onset until the end of the intervention 
for the intervention group.

These data and the divergence in task performance 
between groups across time can also be nicely visualized 
with a ridgeline plot (Fig. 5):

# Static ridgeline plot   (code  
 snippet 13)

# We flip the y-axis, so that Week 1  
 is at the top
ggplot(intervention_data,
  aes(
   x = Task,
   y = fct_rev(as.factor(Week)),
   color = Group,
   fill = Group
  )) +
 geom_density_ridges(alpha = .4) +
 xlab(“Task Performance”) +
 ylab(“Week”) +
 custom_theme

If the focus is on individual performance and its 
change across time, we can also construct a heat map:

# Static heatmap     (code  
 snippet 14)

ggplot(intervention_data, aes(
 x = Week,
 y = ID,
 group = Group,
 fill = Task
)) +
 # Tiles
  geom_tile(color = “white”, size =  
 0.35) +
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Fig. 4. Line graph displaying group-average and individual task per-
formance over time.
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  # Lines indicating the start and  
 end of the intervention

  geom_vline(xintercept = c(4.5,  
 16.5), col = “black”) +

 # Label for start line
 geom_label(
  x = 4.5,
  y = 42,
  label = “Start of intervention”,
  size = 3.5,
  fill = “white”,
  label.size = NA
 ) +
 # Label for end line
 geom_label(
  x = 16.5,
  y = 42,
  label = “End of intervention”,
  size = 3.5,
  fill = “white”,
  label.size = NA
 ) +
  scale_fill_distiller(palette =  
 “YlGnBu”) +

 theme_minimal() +
  scale_x_continuous(expand =  
 c(0, 0)) +

 coord_cartesian(clip = “off”) +
 theme(legend.position = “top”) +
 ylab(“Participant ID”) +
  guides(fill = guide_colorbar 
 (title = “Task performance”)) +

  theme(panel.grid = element_blank())

The resulting plot (see Fig. 6) visualizes each person’s 
performance on the task across the 50 weeks, expressed 
by the color of the tiles.

Research Question 5: Does the intervention elicit dif-
ferences in performance between the groups?

Another potential research question relates to observed 
group differences at specific time points of the interven-
tion to examine the efficacy of the intervention. This 
aspect of the data is nicely visualized with a box plot. In 
our case, we are interested in group differences in Week 
1 (start of the baseline), Week 5 (start of the interven-
tion), Week 16 (end of the intervention), and Week 20 
(end of the postintervention phase). We are also adding 
individual data points. Let us construct the box plot:

# Static box plot    (code snippet 15)

 # For this plot, we are only using  
 data from the critical time points
# and the boxplots need the variable  
 Week to be a factor
ggplot(intervention_data %>% filter 
 (Week %in% c(1, 4, 16, 20)),
     aes(y = Task, x = as.factor 

 (Week), color = Group)) +
  # Points indicating individual  
 performance

 geom_point(alpha = .4) +
  # Boxes with gray points for  
 outliers
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Fig. 5. Ridgeline plot displaying task performance for each group over time.
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 geom_boxplot(
  aes(fill = Group),
  alpha = .4,
  width = .5,
  position = position_dodge(.7),
  outlier.color = “gray”
 ) +
 xlab(“Week”) +
 ylab(“Task performance”) +
 custom_theme

The resulting plot (see Fig. 7) suggests no differences 
at the first two time points, after which task performance 
appears to be higher for the intervention group than for 
the control group.

Research Question 6: Can people’s performance on 
the task be predicted from their alertness level?

Our last question is about the relationship between task 
performance and alertness level. An important aspect to 
visualize here is whether this relationship changes over 
the course of the intervention to check whether the 
intervention changes the relationship between the vari-
ables (e.g., whether task performance becomes less cor-
related with alertness level).

To that end, we construct a scatter plot correlating 
task performance with alertness level using different 
colors to indicate different group and weeks:

# Static scatter plot    (code  
 snippet 16)

ggplot(intervention_data, aes(x =  
 Alertness, y = Task, group =  
 Group)) +
 # Individual points
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Fig. 6. Heat map displaying individual performance over time.
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  geom_point(aes(fill = Week, shape =  
 Group),

        size = 2,
         alpha = .4) +
 # Group trendlines
 geom_smooth(aes(color = Group),  
  method = “lm”, fullrange = TRUE) +
 ylab(“Task Performance”) +
 theme_classic() +
 scale_fill_distiller(palette =  
 “YlGnBu”) +
 scale_color_manual(values =  
  c(“#eeaa7b”, “#66b9bf”)) +
 scale_shape_manual(values = c(22, 23))

Positive correlations across all weeks for both the 
intervention and the control groups can easily be 

identified (see Fig. 8), but how these correlations change 
across weeks is less easily discernible.

Although all of these plots convey useful information, 
adding dynamic content can extend functionality by 
either making the plots more suitable for data explora-
tion or making the data more easily digestible for an 
audience during presentations. We illustrate these two 
aspects of dynamic plotting in the next sections.

Make It Pop: Interactive Plots

In this section, we demonstrate how to add interactive 
features to some of the plots above. Interactive plots are 
especially useful during the data-exploration phase, for 
example, to identify outliers by highlighting data of par-
ticular participants or to get a better overview of the 
data by visualizing descriptive statistics on the plots.
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Fig. 7. Static box plot displaying potential group differences at specific time points.
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Example 1: future-imagination data set

Let us start with the violin plot we constructed for our 
first research question (see Fig. 1; code snippet 8). This 
plot is useful to inspect differences between conditions, 
but it is not as easy to identify data of specific individu-
als. We could assign different colors or shapes to the 
individual data points, but especially with large groups, 
this gets messy very quickly. A nice alternative is to make 
this plot interactive. Using the package ggiraph, we can 
highlight the data of single individuals by hovering over 
data points.

As mentioned earlier, ggiraph provides adapted 
geoms that will create the interactivity. To build an inter-
active version of the violin plot, we build the plot again, 
replacing ggplot2’s geom_point() with ggiraph’s inter-
active alternative geom_point_interactive():

# Interactive violin plot    (code  
 snippet 17)

p_violin_interactive <-
  ggplot(imagination_data %>% filter 
 (Time_point == 1),

     aes(x = fct_rev(Condition),  
 y = RT)) +

 # Violins
  geom_violin(trim = FALSE, alpha =  
 0.6, aes(fill = Condition)) +

 # Boxes
 geom_boxplot(width = 0.1) +
 # Individual data points
  geom_point_interactive(aes(tooltip  

 = ID, data_id = ID), alpha = .4) +
 xlab(“Condition”) +
 ylab(“Response time (ms)”) +
 custom_theme +
 theme(legend.position = “none”)

The code is identical to the previous version, apart 
from the name of the geom and the aesthetics that spec-
ify details of the interactivity. Inside geom_point_
interactive(), we set tooltip and data_id to 
the subject identifier ID. This will display the partici-
pant’s ID when one hovers over a data point and high-
light all of this individual’s data.

Handing this object to the girafe() function will 
create and display the interactive plot:

# Display interactive violin plot    
 (code snippet 18)

girafe(ggobj = p_violin_interactive,
   options = list(

    opts_hover_inv(css = “opacity: 
 0.2”),

    opts_hover(css = “stroke- 
 width:1”)

 ))

In addition to passing the name of the saved plot, the 
girafe() function also lets us specify further options. 
We added some hover options to make the nonselected 
data points transparent (opts_hover_inv(css = 
“opacity:0.2”)) and to slightly increase the outline 
of the points (opts_hover(css = “stroke-
width:1”)) when highlighting individuals.

The result is a plot with which we can interact. Using 
this interactive version of the plot, we can inspect indi-
viduals’ data points along with the participant label (see 
Fig. 9), which might be more cumbersome to find out 
using the static version of the plot or inspecting the data 
themselves.

Using the same strategy, we can also make the second 
violin plot (see Fig. 2; code snippet 9) interactive.  
This time, we use geom_line_interactive() in 
addition to ggiraph’s interactive version of geom_ 
point().

# Interactive violin plot with lines    
 (code snippet 19)

p_violin_with_lines_interactive <-
  ggplot(imagination_data %>%  
 filter(Condition == “Future”),

   aes(x = Time_point, y = RT)) +
 # Violins
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Fig. 9. Screenshot of interactive violin plot. Plot created with the 
ggiraph package. The interactive version is available at osf.io/tj2xr.

http://osf.io/tj2xr
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  geom_violin(trim = FALSE, alpha =  
 0.6, fill = “#94618e”) +

 # Boxes
 geom_boxplot(width = 0.1) +
 # Individual data points
 geom_point_interactive(
  aes(tooltip = ID, data_id = ID),
  alpha = .4) +
 # Individual lines
 geom_line_interactive(
  aes(group = ID, tooltip = ID, data_ 
 id = ID),

 alpha = .2,
 linetype = “dashed”) +
 xlab(“Time point”) +
 ylab(“Response time (ms)”) +
 custom_theme

As before, girafe() will create and display the 
interactive plot:

# Display interactive violin plot  
 with lines  (code snippet 20)

girafe(ggobj = p_violin_with_lines_ 
 interactive,
  options = list(
    opts_hover_inv(css = “opacity: 

 0.2”),
   opts_hover(css = “stroke-width:1”)
  ))

In this interactive version of the plot (see Fig. 10), the 
lines connecting individuals’ data points are highlighted 
in addition to the points, a feature that might be espe-
cially useful with bigger data sets.

Finally, ggiraph and its geom_point_interactive() can 
also be used to easily make the scatter plot (see Fig. 3; 
code snippet 11) interactive:

# Interactive scatter plot    (code  
 snippet 21)

p_scatter_interactive <-
 ggplot(imagination_data_wide,
    aes(x = RT_Past, y = RT_Future,  

 color = Time_point)) +
 # Individual points
 geom_point_interactive(
   aes(size = Detail_Mean, tooltip =  

 ID, data_id = ID),
  alpha = .4) +
# Trendlines
 geom_smooth(method = “lm”) +
# Distributions
geom_rug(alpha = .4) +
  xlab(“Response time (ms) past  
 events”) +

  ylab(“Response time (ms) future  
 events”) +

 custom_theme +
  guides(color = guide_legend(title =  
 “Time point”),

  size = guide_legend(title =  
 “Detail rating”))

girafe(ggobj = p_scatter_interactive,
  options = list(
    opts_hover_inv(css = “opacity: 

 0.2”),
   opts_hover(css = “stroke-width:1”)
  ))

This interactive version of the scatter plot (Fig. 11) 
allows us to highlight individuals’ data points across the 
three time points.

Example 2: intervention data set

Let us look at the plots for the second data set. The line 
graph we constructed for Research Question 4 (see Fig. 
4; code snippet 12) is useful to inspect group trends, but 
making it interactive makes it very easy to spot indi-
vidual trajectories or atypical patterns in the data. To 
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Fig. 10. Screenshot of interactive violin plot with lines. Plot created 
with the ggiraph package. The interactive version is available at osf 
.io/tj2xr.

http://osf.io/tj2xr
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build an interactive version of the line graph, we replace 
ggplot2’s geom_line() with ggiraph’s interactive alter-
native geom_line_interactive():

# Interactive line graph    (code  
 snippet 22)

p_line_interactive <-
  ggplot(intervention_data, aes(x =  
 Week, y = Task, color = Group)) +

  # Gray rectangle to highlight 
intervention phase

 annotate(
  “rect”,
  xmin = 4.5,
  xmax = 16.5,
  ymin = 0,
  ymax = Inf,
  alpha = 0.1,
  fill = “gray45”
 ) +
 # Label for rectangle
 annotate(
  geom = “text”,
  x = 10.5,

  y = max(intervention_data$Task) + 1,
  label = “Intervention”,
  size = 3.5,
  color = “gray35”
 ) +
 # Individual lines
 geom_line_interactive(aes(
  group = ID,
  tooltip = ID,
  data_id = ID
 ),
 size = .5,
 alpha = .15) +
 # Group average lines
 stat_summary(geom = “line”,
         fun = “mean”) +
 # Group average points
 stat_summary(geom = “point”,
         fun = “mean”) +
 ylab(“Task performance”) +
 custom_theme +
 theme(legend.position = “top”)

As with the other data set, handing this object to the 
girafe() function will create and display the interac-
tive plot:
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Fig. 11. Screenshot of interactive scatter plot. Plot created with the ggiraph pack-
age. The interactive version is available at osf.io/tj2xr.

http://osf.io/tj2xr
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# Display interactive line graph    
 (code snippet 23)

girafe(ggobj = p_line_interactive,
   options = list(
     opts_hover_inv(css = “opacity: 

 0.2”),
     opts_hover(css = “stroke- 

 width:1.5”)
   ))

Using this interactive version of the plot (see Fig. 12), 
we can inspect individuals’ trajectories across time easily, 
get the participant labels, and identify potential outliers.

In a similar way, the heat map displaying individual 
performance (see Fig. 6; code snippet 14) can also be 
made interactive. As before, we use ggiraph and change 
only the geom layer:

# Interactive heatmap    (code 
snippet 24)

p_tile_interactive <-
 ggplot(intervention_data, aes(
  x = Week,
  y = ID,
  group = Group,
  fill = Task
 )) +
 # Tiles
 geom_tile_interactive(color = “white”,
      size = 0.35,
       aes(tooltip = Task, data_ 

 id = ID)) +
  # Line indicating the start of the  
 intervention

  geom_vline(xintercept = c(4.5,  
 16.5), col = “black”) +

 # Label for start line
 geom_label(
  x = 4.5,
  y = 42,
  label = “Start of intervention”,
  size = 3.5,
  fill = “white”,
  label.size = NA
 ) +
 # Label for end line
 geom_label(
  x = 16.5,
  y = 42,
  label = “End of intervention”,
  size = 3.5,
  fill = “white”,
  label.size = NA
 ) +

  scale_fill_distiller(palette =  
 “YlGnBu”) +

 theme_minimal() +
  scale_x_continuous(expand = c(0,  
 0)) +

 coord_cartesian(clip = “off”) +
 theme(legend.position = “top”) +
 ylab(“Participant ID”) +
  guides(fill = guide_colorbar(title  
 = “Task performance”)) +

 theme(panel.grid = element_blank())

This time, geom_tile() is replaced by geom_
tile_interactive(). Inside this function, we spec-
ify that we want to display the task-performance values 
(tooltip = Task). The line data_id = ID ensures 
that all data of one individual is highlighted; changing 
data_id to Week instead will highlight a particular 
week. Let us use the girafe() function to create the 
interactive plot:

# Display interactive heatmap    
 (code snippet 25)

girafe(ggobj = p_tile_interactive,
   options = list(
     opts_hover_inv(css = “opacity: 

 0.4”),
    opts_hover(css = “stroke- 
     width:.5”)
   ))

Apart from slightly adapting the hover options, the 
code is the same as for the line graph (see Fig. 13).
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Fig. 12. Screenshot of interactive line graph. Plot created with the 
ggiraph package. The interactive version is available at osf.io/tj2xr.
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In the data-exploration phase, it might also be useful 
to add summary statistics to a plot so that specific values 
can be directly inspected without the need to generate 
them separately, for example, in the form of a table. This 
can be rendered easily with the plotly package. Plotly’s 
syntax is slightly different to the one used by ggplot2, 
but the plot is also created in layers. Let us use plotly to 
create an interactive version of the box plot from earlier 
(see Fig. 7; code snippet 15):

# Interactive box plot    (code  
 snippet 26)

# For this plot, we are only using  
 data from the critical time points
# and the boxplots need the variable  
 Week to be a factor
plot_ly(

  intervention_data %>% filter(Week  
 %in% c(1, 4, 16, 20)),

 y = ~Task,
 x = ~as.factor(Week),
 color = ~Group,
 # Boxes
 type = “box”,
 colors = c(“#eeaa7b”, “#66b9bf”)
) %>%
 # Grouping of boxes
 layout(boxmode = “group”) %>%
  # Points indicating individual  
 performance

 add_trace(type = “scatter”) %>%
  layout(xaxis = list(title =  
 list(text = “Week”)),

    yaxis = list(title = list(text =  
 “Task performance”)))
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Fig. 13. Screenshot of interactive heat map. Plots created with the ggiraph package. The interactive version 
is available at osf.io/tj2xr.
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We use the plot_ly() instead of the ggplotly() 
function here because although the latter works well 
with most simple types of plots, it does not handle the 
grouping properly in this case. As with ggplot2, we first 
specify which data set and variables we want to use. We 
also specify that we want to create a box plot (type = 
“box”), the line layout(boxmode = “group”) 
handles the grouping, and the last line adds points to 
the plot (add_trace(type = “scatter”)). For 
this plot, we additionally specify the colors because our 
custom theme is ggplot2-specific. The code chunk pro-
duces the plot displayed in Figure 14. Hovering over 
different boxes in the plot displays useful summary sta-
tistics. The values of single data points can also be dis-
played. Some additional interesting features provided by 
plotly are that parts of the plot can be hidden by clicking 
on legend entries and zoomed by clicking and dragging 
parts of the plot with the mouse. The toolbar on the top 
right can be used for further functionalities, such as sav-
ing the plot.

Make It Smooth: Building Animations

Animations, which allow visualizing the evolution of 
data across a variable such as time, are particularly use-
ful for the presentation of findings, for example, during 
talks. Several packages exist now that make turning plots 
into animations fairly straightforward.

Example 1: future-imagination data set

We start with the violin plot from earlier (see Fig. 2; code 
snippet 9) and adapt it so that the three violin plots are 
revealed sequentially. Using the gganimate package, the 
ggplot2 code can be reused, with minimal additional 
code that specifies the desired animation type. In this 
case, we add gganimate’s layer transition_time() 
to the ggplot2 code, which declares that data should be 
revealed along a continuous variable (in this case, 
Time_point). If no animation gets created and you 
get the error message file_renderer failed to 
copy frames to the destination directory, 
check for writing permissions or try running Rstudio as 
administrator.

There are two parts to creating animated plots with 
gganimate. First, we specify the plot and the animation 
type we want to use:

# Animated violin plot with lines    
 (code snippet 27)

p_violin_animated <-
  ggplot(imagination_data %>%  
 filter(Condition == “Future”),

    aes(x = as.numeric(Time_point),  
 y = RT)) +

 # Violins

Fig. 14. Screenshot of interactive box plot. Plot created with the plotly package. The 
interactive version can is available at osf.io/tj2xr.
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  geom_violin(trim = FALSE, alpha =  
 0.6, fill = “#94618e”) +

 # Boxes
 geom_boxplot(width = 0.1) +
  # Points indicating individual  
 performance

 geom_point(alpha = .4) +
 xlab(“Time point”) +
 ylab(“Response time (ms)”) +
 custom_theme +
 transition_time(as.numeric(Time_ 
  point)) +
 shadow_mark() +
 ease_aes(‘cubic-in-out’)

Using Time_point inside gganimate’s transi-
tion_time() specifies that the plot should be revealed 
along the three time points of the experiment during 
which the same event was imagined. The layer shadow_
mark() ensures that once the plots are revealed, they 
persist instead of disappearing, and the ease_aes() 
function defines the easing of the animation. To find all 
possible easing options, see Pedersen and Robinson (n.d.).

The animated version of the plot can be displayed in 
Rstudio or in an html file by either printing the variable 
name or using gganimate’s animate() function:

# Display animated violin plot with  
 lines  (code snippet 28)

animate(p_violin_animated, end_pause  
 = 40)

Using this function, we can specify additional argu-
ments. Here, we added a pause of 40 frames at the end 
of the animation, before it starts from the beginning. The 
renderer can also be changed if a different file format is 
preferred. The renderer av_renderer(), for example, 
will return a video as output, which can be useful to 
pause the animation during presentations. The resulting 
animation is visualized in Figure 15.

Finally, the animation can be saved to file using:

# Save animated violin plot with  
 lines   (code snippet 29)

anim_save(“violin_anim.gif”,  
 animation = last_animation())

The function last_animation() is used analo-
gously to ggplot2’s last_plot() to retrieve the most 
recently created animation. Alternatively, the animation 
can be saved into a variable, and the variable name can 
then be used in anim_save().

In a similar way, we can also use gganimate to ani-
mate the scatter plot from the first example (see Fig. 3; 
code snippet 11) to cycle through the time points. This 
time, we use gganimate’s transition_states(), 
which allows animating over a categorical variable:

# Animated scatter plot    (code  
 snippet 30)

p_scatter_animated <-
 ggplot(imagination_data_wide,
   aes(x = RT_Past, y = RT_Future,  

 color = Time_point)) +
 # Individual points
  geom_point(alpha = .4, aes(group =  
 ID, size = Detail_Mean)) +

 # Trendlines
  geom_smooth(method = “lm”, se =  
 FALSE, aes(group = Time_point)) +

 # Distributions
  geom_rug(alpha = .4, aes(group =  
 ID)) +

  xlab(“Past construction time  
 (ms)”) +

  ylab(“Future construction time  
 (ms)”) +

 custom_theme +
  guides(color = guide_legend(title =  
 “Time point”),

   size = guide_legend(title =  
 “Detail rating”)) +

  transition_states(Time_point,  
 wrap = FALSE) +

 shadow_mark() +
 ease_aes(‘cubic-in-out’)

As before, let us view the animation using the  
animate() function:

# Display animated scatter plot    
 (code snippet 31)

animate(p_scatter_animated, end_ 
 pause = 40)

The animation is visualized in Figure 16.

Example 2: intervention data set

For the intervention data set, we illustrate the same 
process using gganimate for the line graph, the ridgeline 
plot, and the scatter plot. We start with the line graph 
(see Fig. 4; code snippet 12) and adapt it so that the  
data are gradually revealed across the weeks of the 
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intervention. This time, we use gganimate’s layer tran-
sition_reveal() to the ggplot2 code, which is typi-
cally used to gradually reveal time-series data:

# Animated line graph    (code  
 snippet 32)

p_line_animated <-
  ggplot(intervention_data, aes(x =  
 Week, y = Task, color = Group))+

  # Gray rectangle to highlight  
 intervention phase

 annotate(
  “rect”,
  xmin = 4.5,
  xmax = 16.5,
  ymin = 0,
  ymax = Inf,
  alpha = 0.1,
  fill = “gray45”
 ) +
 # Label for rectangle
 annotate(
 geom = “text”,
  x = 10.5,
   y = max(intervention_data$Task) + 1,
  label = “Intervention”,
  size = 3.5,
  color = “gray35”
 ) +
 # Individual lines
  geom_line(aes(group = ID), size =  
 .5, alpha = .15) +

 # Group average lines
  stat_summary(geom = “line”, fun =  
 “mean”) +

 # Group average points
  stat_summary(geom = “point”, fun =  
 “mean”) +

 ylab(“Task performance”) +
 custom_theme +
 theme(legend.position = “top”) +
 transition_reveal(Week)

Using Week inside transition_reveal() speci-
fies that the plot should be revealed along the weeks of 
the intervention. Let us display the resulting animation:

# Display animated line graph    
 (code snippet 33)

animate(p_line_animated, fps = 6,  
 end_pause = 40)

In addition to the pause of 40 frames at the end of 
the animation, we specified that six frames per second 
should be displayed (10 is the default). See the resulting 
animation in Figure 17.

Instead of gradually revealing parts of the plot over 
time, we can animate the ridgeline plot (see Fig. 5; code 
snippet 13) so that the distributions dynamically shift 
across the weeks of the intervention. This animation 
style is similar to the animation of the scatter plot of the 
future-imagination data set used earlier (code snippet 
30), so we use gganimate’s transition_states() 
layer again:

# Animated ridgeline plot    (code  
 snippet 34)

p_ridge_anim <-
 ggplot(intervention_data, aes(
  x = Task,
  y = 0,
  color = Group,
  fill = Group
 )) +
 geom_density_ridges(alpha = .4) +
 xlab(“Task Performance”) +
 custom_theme +
 theme(
  axis.title.y = element_blank(),
  axis.text.y = element_blank(),
  axis.ticks.y = element_blank(),
  axis.line.y = element_blank()
 ) +
  transition_states(Week, transition_ 
 length = 3, state_length = 0) +

 labs(title = “Week {closest_state}”)

In addition to the transition_states() layer, 
we also added a title to the plot that indicates which 
intervention week is being displayed (labs(title = 
“Week {closest_state}”)), and we used the 
theme() layer to indicate that we do not want to dis-
play a y-axis. Note that in the aes layer, we also set y 
to 0.

After building the plot, let us use animate() to 
display it and control animation-related options:

# Display animated ridgeline plot    
 (code snippet 35)

animate(p_ridge_anim, fps = 3,  
 width = 500, height = 150, end_ 
 pause = 40)
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This time, we also specified the optional arguments 
width and height to illustrate additional customiza-
tion options (see Fig. 18).

Beyond making the presentation of plots more visu-
ally appealing or more easily digestible during presenta-
tions, animations also allow us to examine and present 
new aspects of our data, such as the evolution of the 
intervention-data scatter plot (see Fig. 8; code snippet 
16) over time. Similar to the previous example, we can 
cycle through the weeks, constructing a separate correla-
tion plot for each week. Given that we already animated 
a correlation plot and that we have used gganimate in 
several different examples now, we use plotly this time 
to showcase another way to create animations. With 
plotly, a version of the static plot first needs to be recre-
ated, with the aesthetics argument frame added to 
geom_point(), which specifies which dimension to 
animate over (in our case, Week):

# Animated scatter plot    (code  
 snippet 36)

p_scatter2_animated <-
 ggplot(intervention_data, aes(
  x = Alertness,
  y = Task,
  group = Group,
  color = Group
 )) +
 # Individual points
  geom_point(aes(frame = Week), alpha =  
 .6) +

 # Group trendlines
 geom_smooth(
  aes(frame = Week, ids = ID),
  method = “lm”,
  se = FALSE,
  fullrange = T
 ) +
 custom_theme

We can then use ggplotly() to animate and dis-
play the plot:

# Animate and display the scatter  
 plot   (code snippet 37)

ggplotly(p_scatter2_animated)

Using the animated version of the scatter plot (see 
Fig. 19), it becomes more easily apparent that the cor-
relation between task performance and alertness level 
decreased across the intervention for the intervention 
group but not to the same extent for the control group.

Make It Shine: Blending Interactive and 
Animated Features

Once a project is complete, data and materials are often 
shared alongside the article that describes the project 
and presents its findings. Packaging these up into a 
dashboard or web app for a project is a great way not 
only to share additional material and let others recreate 
plots and statistics from the article but also to allow for 
additional exploration and manipulation of the data, 
such as examining the effect of outliers or particular 
modeling choices on the results. The R package shiny 
makes building interactive dashboards and web apps 
straightforward, without the need for web development 
skills and deep knowledge of web technologies such as 
HTML or CSS.

Extensive and detailed shiny tutorials are provided 
elsewhere (see e.g., Shiny Learning Resources, n.d.; 
Wickham, 2021). Briefly, Shiny apps are written in a 
single R script called app.R, which consists of three 
main components: a ui (user interface) object that con-
tains information about the layout of the app, a server 
function that contains all code needed to build and 
update the objects in the app, and a call to the shinyApp 
function to build the app. As mentioned earlier, shiny 
uses a programming style called reactive programming. 
Reactive programming lets you control which parts of 
your app update (i.e., which parts of your code are 
rerun) and when using the inputs provided by the user. 
For our purposes, the main reactive components are 
reactive sources (defined as input in the ui object) 
and reactive endpoints (defined as output in the 
server function). A reactive endpoint can, for example, 
be a plot that is rendered by shiny’s renderPlot() 
function that is then displayed in the app using 
plotOutput(). The code for the plot will be rerun 
every time the input changes. When combining shiny 
with any of the dynamic plotting packages used in this 
tutorial, these endpoint functions have to be adapted to 
their package-specific alternative. We provide an exam-
ple below.

To demonstrate some of Shiny’s features, we built a 
Shiny app that includes dynamic plots for each of the 
questions we addressed for the intervention-data-set 
example (Example 2), additionally allowing for one or 
several individuals to be excluded to check robustness 
(see Fig. 20). For simplicity purposes, we provide instruc-
tions for a simplified version of this app below, which 
displays just the interactive line graph created with  
ggiraph but still allows for the exclusion of individuals 
from the data set. Whenever we reuse code from earlier 
parts of the tutorial, we use a placeholder, indicating 
which code snippets should be inserted (e.g., # <Set 
up custom theme – code snippet 3>). The full 
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Fig. 20. Screenshot of Shiny app with dynamic plots.

Shiny app is available at kwiebels.shinyapps.io/
Dynamic_Data_Visualizations, and the code for the sim-
plified and the full app is available at osf.io/fwy8j.

To start, create a new R script called app.R. Inside 
this script, we first need to load and prepare packages 
and data:

# Shiny app preamble    (code  
 snippet 38)

# Load packages
library(tidyverse)
library(shiny)
library(ggplot2)
library(ggiraph)

# <Set up custom theme – code snippet  
 3>

# Load data
intervention_data <- read_ 
 csv(“intervention_study.csv”)
intervention_data$ID <- as.factor 
 (intervention_data$ID)

Everything needed for the preamble has already been 
covered in the tutorial, apart from the conversion of ID 
into a factor, which is needed to allow the exclusion of 

individuals from the data set. Next, let us add the ui 
object to the script:

# Shiny app ui object    (code 
snippet 39)

ui <- fluidPage(
 titlePanel(“Dynamic Data  
  Visualizations”),

 sidebarLayout(
  sidebarPanel(
   radioButtons(
  inputId = “exclude_choice”,
   label = “Do you want to exclude  

 any participants to check
   robustness?”,
  choices = list(“Yes”, “No”),
  selected = “No”
  ),
  conditionalPanel(
    condition = “input.exclude_ 

 choice == ‘Yes’”,
  selectInput(
   inputId = “exclude”,
    label = “Which participant(s) do  

 you want to exclude?”,
    choices = levels(intervention_ 

 data$ID),

http://kwiebels.shinyapps.io/Dynamic_Data_Visualizations
http://kwiebels.shinyapps.io/Dynamic_Data_Visualizations
http://osf.io/fwy8j
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   multiple = TRUE
   )
  )
 ),
 
  mainPanel(girafeOutput(“plot_ 
 linegraph”))

 )
)

In the ui object, we specify everything related to the 
visual appearance of the app, including the title of the 
app, the general layout, the options available to users 
in the sidebar panel, and what should be displayed in 
the main panel. Note that we had to replace shiny’s 
reactive endpoint function plotOutput() with  
ggiraph’s girafeOutput().

Next, we add the server function:

# Shiny app server function    (code  
 snippet 40)

server <- function(input, output) {
  output$plot_linegraph  
 <- renderGirafe({

 if (input$exclude_choice == “Yes”) {
  seq <- input$exclude
  intervention_data <-
     intervention_data[! 

 (intervention_data$ID  
 %in% seq),]

 }

 # <Interactive line graph – code  
  snippet 22>

 # <Display interactive line graph –  
  code snippet 23>

})
}

Only two things are required in the server function 
for our app: removing data of excluded individuals (if 
the user selects this option) and the code for the plot. 
Note that, as in the previous code snippet, we had to 
replace the shiny function renderPlot() with  
ggiraph’s renderGirafe().

Finally, we need to add code to the end of the script 
to build the app:

# shinyApp function call    (code  
 snippet 41)

shinyApp(ui = ui, server = server)

Running this script will display the app (see Fig. 21).
The reactive endpoint functions for the other pack-

ages we used throughout this tutorial have to be changed 
similarly to the ggiraph ones when used in Shiny apps. 
For interactive and animated graphs with plotly, these 
are changed to plotlyOutput() and render-
Plotly(). There are different options to display ani-
mations created with gganimate, one of which requires 
the gif image to be saved into a temporary image with 
renderImage() that can then be displayed in the app 
using imageOutput(). Refer to the code for the full 
version of the Shiny app for further details.

Discussion

In this tutorial, we described how to turn static figures 
into interactive and animated content. We used the R 
statistical language throughout and based our examples 
on common types of plots and widely used packages. 
The first part of the tutorial focused on building interac-
tive content, an aspect particularly important to early 
stages of a scientific project, such as data exploration. 
In the second part of the tutorial, we showed how to 
animate plots, a useful feature for data communication 
to scientific and general audiences. Finally, we integrated 
these two components into a single Shiny app that let 
us combine the flexibility of interactive graphs with the 
visual appeal and conciseness of animations. These 
richer modes of visualization can be ideal for sharing 
findings, with prespecified features that can help users 
explore key aspects of a study results. To conclude, we 
provide a number of practical recommendations to help 
researchers navigate use and implementation of dynamic 
content into a research project and close with a few 
remarks about prospective challenges and opportunities 
in the field of psychology.

Practical recommendations

Fancier is not always better; sometimes, traditional, static 
figures are the best way to convey information in a clear 
and efficient manner (Bétrancourt & Tversky, 2000; 
Lewalter, 2003). Because dynamic visualizations have a 
cost—inasmuch as they represent additional time, effort, 
and sometimes resources compared with more tradi-
tional visual displays—it may be difficult to gauge what 
content to turn into interactive or animated displays and 
when. Here, we provide five recommendations that we 
hope can help guide the reader through this process.

Recommendation 1: understand  
the specifics of your data

Given the variety of options now available to psycholo-
gists to present their research, understanding the type 
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of data that is to be displayed is key. If the data structure 
is complex, multifaceted, or layered, interactivity can 
often be valuable because it provides a tool to explore 
different aspects sequentially or in combination with one 
another (Ward et al., 2011). Animations can be especially 
beneficial to represent phenomena that change over time 
or processes that are being iterated over (Robertson et al., 
2008; Yu et al., 2010). In the case of low-dimensional data 
or if the added features lead to an unnecessary cognitive 
burden, the value of dynamic visualizations over that of 
static displays might be less evident (Steele & Iliinsky, 
2010).

Recommendation 2: know your 
audience

Just like the data, the intended audience is also a crucial 
element in deciding to use dynamic displays (Kennedy, 
2012). Peers might value interactivity to be able to verify 
assumptions, check alternative explanations, or explore 
complementary findings. Animations might be better 
suited to large, eclectic audiences who may not have the 
time or expertise necessary to invest in active explora-
tion of the data. Students and trainees might benefit from 
either or both of these features, depending on their 
specific goals and needs.

Recommendation 3: adapt visualizations 
to the current needs of the project

The requirements of a research project often differ across 
its life cycle. Features that are key to data exploration 

may not match those needed to discuss results with a 
team of collaborators or to present findings to a larger 
audience. Flexibility and creativity in the display of 
visual content can facilitate insights, help convey infor-
mation in a more effective way, and make a presentation 
more memorable.

Recommendation 4: complement journal 
publication with online materials

In case journal platforms lack the capabilities to display 
dynamic graphs, it is relatively straightforward to com-
plement the publication of an article with online materi-
als, for example, in the form of a repository that can 
enable more sophisticated display. Tools such as Binder 
(mybinder.org) or Stencila (stenci.la) can help turn a 
static repository (e.g., from GitHub; github.com) into a 
collection of interactive notebooks or executable docu-
ments. We also provide an example of a repository 
including dynamic content with this article, hosted on 
OSF (osf.io). Along with alternatives such as Dryad 
(datadryad.org), FigShare (figshare.com), or Zenodo 
(zenodo.org), OSF allows creating a persistent digital 
object identifier for each submission, making reposito-
ries and their content easily citable.

Recommendation 5: consider packaging 
research findings into a Shiny app

In many cases, articles can benefit from alternate modes 
of presentation for the reported findings, which allow 
active exploration of the results. For this, we recommend 

Fig. 21. Screenshot of simplified version of Shiny app.

http://mybinder.org
http://stenci.la
http://github.com
http://osf.io
http://datadryad.org
http://figshare.com
http://zenodo.org
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Shiny apps, which are extremely flexible and easy to 
implement in R. Exploring data with Shiny apps is espe-
cially relevant when results involve a large number of 
variables, analyses are complex, or contributions are 
methodological in nature, but the versatility of Shiny 
apps makes them useful for almost any research project. 
Having the possibility to interact with the data can 
enhance understanding, engagement, and ultimately the 
impact of a research project.

Concluding remarks

A vast literature indicates that when used appropriately, 
dynamic visualizations can promote understanding and 
retention of various scientific findings and concepts 
(e.g., Ryoo & Linn, 2012; Suits & Sanger, 2013; Yang 
et al., 2015). Not only can they facilitate conveying and 
streamlining information at the time of publication, but 
dynamic visualizations can also help communication 
among team members at earlier stages of a project and 
dissemination of findings via talks, conferences, and in 
the media after publication. Furthermore, when projects 
have the potential to be continuously updated—for 
example, in the case of longitudinal studies or meta-
analyses (Braver et al., 2014)—figures that are based on 
dynamic code can get updated automatically as new data 
come in, thus ensuring the user has access to the latest, 
up-to-date information.

In many ways, current publishing models pose a num-
ber of challenges to the implementation of this type of 
content, and a number of journals and publishing plat-
forms are currently working toward developing ways to 
enable more elaborate content (see e.g., Colomb & 
Brembs, 2014; Penfold, 2017). The move toward more 
sophisticated options for visual content is unquestion-
ably the future of scientific publishing, with preregistra-
tions, articles, code, and data hosted together to facilitate 
evaluation and active exploration of a research project. 
In the meantime, independent hosting platforms allow 
moving beyond the traditional format of presentation 
for scientific projects, and researchers should become 
familiar with the possibilities and capabilities they afford. 
We hope these developments will enable a more ubiq-
uitous use of dynamic visualizations to help further the 
understanding of the complex, multifaceted relationships 
that govern brains and behaviors.
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Notes

1. At the time of writing, the talk had received a combined 20 
million views across TED and YouTube platforms.
2. See, for example, Carbon Dioxide (n.d.) and Center for Systems 
Science and Engineering Johns Hopkins University (n.d.).
3. Note that many alternatives exist outside the R language, such 
as D3.js (https://d3js.org/), dimple (http://dimplejs.org/), Vega 
(https://vega.github.io/vega/), Tableau (https://www.tableau 
.com/resource/data-visualization), or Google’s Visualization 
API (https://developers.google.com/chart/interactive/docs/refer 
ence). Most of these alternatives provide functionalities above 
and beyond those available in R and thus may be attractive to 
users who plan on using dynamic data visualizations exten-
sively and across a number of media (e.g., website, educational 
resources). However, because they typically require program-
ming knowledge beyond what is assumed in this tutorial, we 
focus on implementations in R.
4. The use of ggiraph or plotly for interactive data visualizations 
depends largely on personal preference. ggiraph is often thought 
to be more straightforward to implement, especially for ggplot2 
users, whereas plotly has a number of additional functionalities 
that can be advantageous in specific circumstances (e.g., toolbar 
to hide parts of a plot, zooming feature). Here, we present the 
two alternatives because both are extremely popular and being 
actively developed, with new features and functionalities being 
released regularly.
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