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Abstract

The fast-paced development of computational tools has enabled 
tremendous scientific progress in recent years. However, this rapid 
surge of technological capability also comes at a cost, as it leads to an 
increase in the complexity of software environments and potential 
compatibility issues across systems. Advanced workflows in processing 
or analysis often require specific software versions and operating 
systems to run smoothly, and discrepancies across machines and 
researchers can impede reproducibility and efficient collaboration. 
As a result, scientific teams are increasingly relying on containers 
to implement robust, dependable research ecosystems. Originally 
popularized in software engineering, containers have become common 
in scientific projects, particularly in large collaborative efforts. In 
this Primer, we describe what containers are, how they work and the 
rationale for their use in scientific projects. We review state-of-the-
art implementations in diverse contexts and fields, with examples in 
various scientific fields. Finally, we discuss the possibilities enabled by 
the widespread adoption of containerization, especially in the context 
of open and reproducible research, and propose recommendations 
to facilitate seamless implementation across platforms and domains, 
including within high-performance computing clusters such as those 
typically available at universities and research institutes.
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are provided in the Docker ecosystem, for which a brief overview is 
provided.

Introducing containers
A container is a self-contained and executable package that includes 
all of the necessary components for running a software application, 
such as system tools, libraries settings and the application itself, as 
well as any operating system components that are not provided by 
the host operating system. This means that containers are completely 
isolated from one another and the host operating system, and they can 
run anywhere, regardless of the environment. Applications can then 
be run consistently across different environments, including different 
operating systems and hardware configurations. Specifically, contain-
ers work by packaging an application and its dependencies into a single 
container image, which can then be run on any host that has a container 
runtime installed. The container runtime handles the execution of the 
application and manages the resources it requires, such as memory 
and central processing units (CPUs).

One of the main advantages of using containers is their port-
ability. Because containers include all dependencies of an applica-
tion, they can be moved between different environments. This allows 
developers to build and test applications on their own machines and 
then deploy them to other environments without worrying about 
compatibility issues. Containers take up less space and require fewer 
resources than traditional virtual machines (see Table 1 for a com-
parison of virtual machines and containers), making them well suited 
for use in cloud computing environments33. Containers also isolate 
applications from each other and the host system, which help prevent 
conflicts between applications. In addition, modern language-based 
package management tools, such as Python virtual environments, 
offer a solution to further reduce the chances of encountering depend-
ency conflicts even within a container. Python virtual environments 
enable developers to create isolated environments with their own 
sets of dependencies, configuration and settings for each project. 
This means that even if multiple containers are running on the same 
host, each container can have its own Python virtual environment with 
its specific dependencies, avoiding conflicts and ensuring smooth 
operation.

The selection of virtual machines or containers depends on the 
specific needs and requirements of the application or process. Histori-
cally, virtual machines have been preferred when the research requires 
a highly isolated environment, for example, when the integrity of 
the research data and environment is critical, such as in medical or 
pharmacological research. Virtual machines offer fundamentally 
more isolation than containers, which can be an advantage in certain 
situations. However, developments in container technology such 
as namespaces, SELinux and AppArmor have improved container 
isolation and made them suitable for a wider range of research applica-
tions. Namespaces, for instance, have been a key enabling technology 
for containerization, and are now well established. In addition, tech-
nologies such as Singularity30 and Shifter34 have provided concrete 
solutions for accessing specific hardware resources, such as graph-
ics processing units (GPUs) or HPC clusters. In general, the choice 
between virtual machines and containers will depend on the specific 
needs of the researcher and the degree of isolation required for the 
given application or process.

Containers are often preferable in most practical cases, especially 
in situations in which a researcher needs to run multiple experiments 
concurrently. In this case, using containers allows the researcher to 

Introduction
In the past few decades, science has become increasingly collaborative, 
with modern scientific workflows typically involving multiple people, 
often spread across research teams and locations1. The distributed 
nature of modern scientific research has had a substantial impact on 
scientific discovery, enabling researchers to tackle complex problems 
that require a diverse range of expertise and resources, from genomic 
sequencing2,3 to epidemiological modelling4 and climate predictions5. 
This shift towards incorporating more data and techniques from vari-
ous sources has led to science becoming more computational6–9. Scien-
tists often build upon workflows of each other and share data and code 
publicly10,11. Given the tremendous amount of work and effort that often 
goes into collaborative projects, reusability is key to enable efficient, 
cumulative research and reproducibility has become an inherent part 
of modern scientific training12–18.

In this context, computational reproducibility — the ability to 
obtain consistent and verifiable results from a computational experi-
ment or analysis when the same input data, code and software envi-
ronment are used — has become central to many research projects. 
Although the move towards more collaborative and open practices 
is undeniably beneficial to the scientific enterprise19–22, the complex-
ity afforded by shared and predominantly computational scientific 
workflows has also brought challenges23. With users distributed across 
machines, platforms and software versions, compatibility issues are 
bound to arise, with the potential to impede effective use and devel-
opment — an issue colloquially referred to as dependency hell (Box 1). 
Collaborators attempting to reproduce or build upon existing work 
often face challenges that at best slow down scientific projects or in 
extreme cases can prevent reuse or collaboration altogether24,25.

Containers provide an answer to these challenges26. Broadly speak-
ing, containers encapsulate all information needed to run computer 
code in a fully configured environment. This includes specific software 
versions, as well as their dependencies and operating system configura-
tions27. More specifically, containers solve five major problems associ-
ated with deploying and managing applications in scientific research. 
By allowing researchers to package their code, data and dependen-
cies into a self-contained environment, containers solve issues of 
reproducibility. Containers also allow researchers to share their work 
with others more easily, enabling more efficient collaboration and 
faster progress, and run their code on different operating systems 
and hardware while circumventing compatibility issues. Containers 
can be seamlessly deployed to cloud environments28, enabling seam-
less scalability. Finally, by enabling researchers to allocate resources 
more efficiently and avoid unnecessary consumption or conflicts with 
other projects, containers allow more efficient project management.

In this Primer, we provide the reader with a comprehensive overview 
of containerization in scientific research, including practical use and 
implementations, illustrated with examples. We focus on the Docker 
ecosystem29 (docker.com), as it is the most common platform used to 
build and share containers27, but also discuss alternatives such as Singu-
larity30,31 or Podman32. We consider challenges and limitations, in particu-
lar with respect to efficiency and compatibility with high-performance 
computing (HPC) environments, and provide guidance on implemen-
tation. We close with a discussion of the future of containerization and 
reproducibility in a rapidly evolving computational environment.

Experimentation
This section introduces containers and provides the basics to run and 
personalize containerization from the perspective of a user. Examples 
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run each experiment in its own container, which can be easily started, 
stopped and modified without affecting the other experiments. This 
is not possible with virtual machines, which require a separate oper-
ating system for each experiment. Virtual machines also tend to be 
much heavier and more resource-intensive than containers, which 
can be an important disadvantage in certain scenarios. Similarly, a key 
feature of containers over virtual machines is the ability to combine 
individual containers together, with each providing a different app. 
Containers are also advantageous when a researcher needs to scale 
their experiments or share their experiments with co-workers, as 
containers contain all the necessary dependencies and configura-
tion settings in a lightweight package. Finally, containers cannot be 
matched when it comes to enabling reproducibility in a lightweight 
and portable manner: researchers can reproduce their experiments 
by creating an identical container with the same dependencies and 
configuration settings.

The Docker platform
Containers are built on top of containerization platforms, which pro-
vide a standard format for packaging and distributing applications. 
These platforms include tools for creating, managing and deploying 
containers. One such platform is Docker, which was designed to make 
it easier to create, deploy and run applications by using containers.

We chose to focus on Docker for several reasons. First, Docker is 
relatively easy to use; it has a simple and intuitive interface that makes 
it straightforward to use and deploy containers. Second, with a vast and 
engaged community or users and developers, Docker has become the 
de facto standard for containerization, providing thousands of preb-
uilt container images that can be used as a starting point for building 
applications, as well as support for addressing challenges that might 
arise at any stage of container development. Third, Docker supports 
multiple operating systems including Windows, Linux and Mac, mak-
ing it easier to deploy applications across different environments. 
Fourth, Docker allows scaling applications up or down on the basis of 
demand, making it an ideal choice for cloud-based deployment. Finally, 
with its built-in security features such as image signing and container 
scanning, Docker ensures the security of applications and prevents 
vulnerability, although its seamless integration with other tools enables 
the management and deployment of applications at scale.

By allowing developers to abstract away the complexities of the 
underlying infrastructure, Docker allows users to focus on writing code, 
enabling writing and testing of applications on their own machines and 
then deploying them to any environment running Docker. Although 
Linux runs within Docker containers, users can access the platform 
through a Windows or Mac computer. Docker consists of three com-
ponents: the Docker software, Docker objects and online Docker 
registries, such as the Docker Hub (Fig. 1).

The Docker software itself consists of two parts: the Docker client 
and the Docker daemon. The Docker client is the primary way that users 
interact with Docker. It is a command-line interface that allows users to 
issue commands to the Docker daemon, such as building, running and  
distributing containers. The Docker daemon is the background 
service that manages the containers: it listens for commands from 
the Docker client and performs the necessary actions to create and 
run containers. The Docker daemon can run on the same host as the 
Docker client, or it can be remotely accessed through the network. 
In addition to the command-line interface, Docker also provides a 
user interface called Docker Desktop, which is available on both Mac 
and Windows operating systems. The Docker Desktop user interface 

provides a graphical way for users to manage containers, images and 
other Docker resources.

The main Docker objects are images and containers. A Docker 
image contains everything needed to run a piece of software, includ-
ing the application code, libraries, dependencies and runtime. Docker 
images are built from Dockerfiles, which include details on which 
base image to use, commands to run and files and directories to copy. 
The main difference between Docker images and Docker containers 
is that images are static and cannot be changed or modified, whereas 
containers are dynamic and can be started, stopped and modified while 
they are running (Box 2). Images are used to create containers, but once 
a container is created, it can be modified and run independently of the 
image that was used to create it.

Box 1

Dependency hell in scientific 
research
Dependency hell describes a situation in which a software 
application or system becomes dependent on other software 
packages, libraries or frameworks, and the dependencies between 
these packages become complex and intertwined. This can make 
it difficult or impossible to update or maintain the system, as any 
changes to one package may have unintended consequences on 
others. Dependency hell can also occur when there are conflicts 
between different versions of the same dependency, or when one 
dependency requires another dependency that is incompatible with 
a different dependency in the system. This can lead to problems 
such as broken builds, runtime errors or instability in the system.

An example of dependency hell is described as follows: 
a researcher is trying to use a specific software (software X), but is 
unable to because they lack the appropriate version of a dependent 
library (library Y) required to install software X, and the correct 
version library Y requires software Z, which in turn requires the 
installation of library W, and so on, until all the dependencies 
are met for software X. Dependency hell can also arise when 
different software packages require different versions of the 
same library, creating conflicts that can be difficult to resolve. 
Altogether, this issue can be time-consuming and frustrating, and 
it can substantially delay progress. Dependencies can be either 
internal or external to each software, with the potential for issues 
to compound. Internal dependencies are those that are within 
the research software itself and can include different modules, 
libraries or classes that are part of the software and are used to 
perform specific tasks. Internal dependencies are generally easier 
to manage and control, as they are part of the research software and 
can be developed and maintained by the research team. External 
dependencies are dependencies that are not part of the research 
software but are required for its use. These can include external 
libraries, frameworks and other software packages that the research 
software depends on. They can be more challenging to manage as 
they are not under the control of the research team and may change 
or become unavailable over time.

https://hub.docker.com
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Finally, the third Docker component is Docker Hub, a cloud-based 
registry service for storing and distributing Docker images. It allows 
users to create and share Docker images with others, as well as to dis-
cover and download prebuilt images created by other users. Docker 
Hub also provides features such as automated builds, version control 
and collaboration tools. It is the default registry for Docker users and 
is used by many organizations to store and share their containerized 
applications. For readers familiar with the Git ecosystem, one can think 
of the relationship between Docker and Docker Hub as that of Git and 
GitHub35,36. Alternatives to Docker Hub abound; one very popular is 
GitHub Container Registry.

Personalizing containers
Reusing existing containers saves time and effort, but researchers 
often need to create personalized containers. Here are some steps 
to personalize containers. Personalization of containers requires 
identifying the specific software and data to be used, including con-
sideration of programming languages, libraries and packages, as 
well as data type, storage and access. The inclusion of a Dockerfile, 
which tells the Docker engine what to do when building the image, also 
must include the software, libraries and other dependencies needed. 
Researchers can also use the ‘docker commit’ command to person-
alize a container by creating a new image from a running container 
and modifying it with additional software or configuration changes. 
However, it is important to note that using docker commit reduces 
visibility and may make the container less reproducible and reliable 
than using a Dockerfile.

It is important to emphasize that using language-based package 
managers in containers, such as pip for Python or npm for Node.js, 
can facilitate the installation of software packages and dependencies 
within the container. This helps ensure that the container is reproduc-
ible and reliable, as it allows for fine-grained control over the versions 
of packages installed. The resulting Docker image will contain all the 
software and data specified in the Dockerfile, as well as any additional 
files or resources that were included in the image.

The container runtime can be further customized by setting envi-
ronment variables, mounting volumes and specifying network con-
figurations. The entry point and command can be customized to allow 
the specific actions that the container will take upon launch. After a 
container has been created, users may want to expose certain ports 

from the container to the host system, which allows accessing network 
services running inside the container from outside the container. This 
is typically done using port mapping, which involves mapping a port 
on the host system to a port in the container.

Once built, the container must be tested, and tools such as strace 
and gdb are used to debug any issues. By personalizing their containers, 
researchers can ensure that their research is reproducible, collabora-
tive and portable, making it easier to share and build upon37. An over-
view of common Docker commands is provided in the Supplementary 
information.

Complements and alternatives to Docker
Docker benefits from a rich ecosystem of interrelated components 
that are in constant development, owing to its growing popularity. The 
Docker ecosystem includes various open-source and commercial tools, 
services and technologies that facilitate the development, deployment 
and management of containerized applications. It extends the capabili-
ties of the Docker platform and enables integration with other systems 
and technologies. These components include Docker Engine (the core 
container engine that allows building, running and managing contain-
ers), Docker Compose (a tool for defining and running multicontainer 
applications), Docker Swarm (a container orchestration platform for 
managing large clusters of Docker nodes), Docker Machine (a tool 
for provisioning and managing Docker hosts) and many others, each 
serving a specific purpose.

In addition to the core Docker ecosystem, several tools have been 
developed that rely on Docker to implement additional functionalities 
or features. For example, the Rocker project38,39 provides containers 
with environments that can accommodate R users straightforwardly. 
It includes tools for building Docker images, creating and managing 
containers and automating tasks using shell scripts. Rocker is specifi-
cally designed for scientific research and includes several prebuilt 
images for common scientific computing tasks. Similarly, containerit40 
makes it easy to package research software and dependencies into con-
tainers and includes tools for building and managing Docker images 
and containers. It is intended to be used as a command-line tool and 
can help automate the creation of containers for research software. 
Both Rocker and containerit are tools that are designed to help scien-
tists create and manage containers for scientific research; Rocker is 
geared towards building and managing container-based workflows 

Table 1 | Containers versus virtual machines

Feature Containers Virtual machines

Resource 
usage

Share the host operating system and the host kernel, making them 
lightweight and efficient

Require more resources than containers, as each virtual machine needs 
its own copy of the operating system and resources are divided among all 
the virtual machines running on the host machine

Deployment Can be deployed and run quickly and smoothly, as they do not 
require a full operating system installation

Require a full operating system installation and can take longer to deploy 
and run

Portability Highly portable and can run on any host system with the same 
architecture — ideal for moving applications between environments

Can also be portable but require virtualization software that must be 
installed on each host system, making them less flexible for moving 
between environments

Isolation Less isolated; although they share the same operating system 
and kernel as the host machine, they are still isolated from one 
another and can run different applications and processes. More 
lightweight and efficient, as they do not require a separate copy 
of the operating system for each container

Completely isolated from one another and the host operating system. 
Each virtual machine has its own copy of the operating system and 
runs in its own self-contained environment. Useful for creating multiple 
environments that need to be separate from one another, such as for 
testing or development purposes

Scalability Can be scaled up or down as needed, making them ideal for 
applications that require horizontal scaling

Can also be scaled, but it may be more challenging, as adding or removing 
virtual machines requires changes to the virtualization environment itself

https://hub.docker.com
https://github.com/features/packages
https://github.com/amrabed/strace-docker
https://github.com/haggaie/docker-gdb
https://rocker-project.org/
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for reproducible research, whereas containerit is focused on creating 
containers for research software.

Relatedly, the R package liftr41, which uses Docker to containerize 
and render RMarkdown documents, can also be used for reproducible 
reporting. To make it easier from the perspective of a user, an RStudio 
add-in is available, which enables self-contained implementation from 
within R. Further guidelines exist on how to build reproducible data 
analysis workflows, including via combining tools such as R Markdown, 
Git, Make and Docker42.

Although Docker is still the most popular containerization plat-
form with the largest ecosystem and user community, there are other 
alternatives available. These include not only Singularity and Podman 
but also OpenShift, LXC, Rocket or Mesos. We discuss two popular 
alternatives, Singularity (a containerization platform specifically 
designed for HPC environments) and Podman (a command-line tool 
that is designed to be used in a similar way to Docker but with a few 
key differences), in Table 2, including by comparing their features and 
functionalities with those of Docker.

Results
By using containers, researchers can address several issues that can 
arise over the course of a research project or research programme, 
including reproducibility, collaboration, compatibility, scalability 
and management. Here, we discuss these five problems in the context 
of compatibility across systems, reliability across versions, resource 
allocation and the facilitation of large-scale collaboration.

Compatibility across systems
Containers are able to abstract the application from the underlying 
hardware and operating system43. This means that the same container-
ized application can be run on various different systems, thus drasti-
cally reducing compatibility issues, allowing researchers to share and 
compare data and results. If different systems are not compatible, it can 
be difficult to exchange data and collaborate on research projects44,45.

Several advantages of containerization also stem indirectly from 
improved compatibility across systems. For example, containers 
establish a standard for data storage and analysis, simplifying com-
parison and validation of results. In neuroscience, containerization 
has helped implement a standardized functional MRI preprocessing 
pipeline known as fmriprep. Similarly, projects such as the Experi-
ment Factory46 in the behavioural sciences have facilitated the use 

of Docker containers to ensure that experiments can run smoothly 
across platforms.

Reliability across versions
Another benefit of using containers is the ability to ensure reliabil-
ity across different versions of the software47,48. This is particularly 
important when it comes to deploying and maintaining applications 
in a production environment, as it can be challenging to ensure that the 
application will run smoothly and consistently across different versions 
of the operating system or other dependencies49.

Containers can help ensure reliability across versions by providing 
a consistent runtime environment for the application, regardless of the 
underlying operating system or hardware. Containers also provide iso-
lation between different applications and their dependencies, as each 
container has its own dedicated resources and is unaware of the exist-
ence of other containers if they are not actively networked together50. 
Finally, containers can make it easier to manage and maintain appli-
cations in a production environment29. For example, containers can 
be used to automate the deployment and updates of applications51, 
ensuring that the correct versions are deployed to the correct locations, 
thereby reducing the risk of errors or downtime caused by manual 
deployment processes, as well as making it easier to roll back to a 
previous version if necessary52.

Resource allocation
Containers streamline resource allocation, reduce resource consump-
tion and minimize conflicts between research projects, facilitating 
project management and promoting smooth coordination among 
researchers. Because they encapsulate all the dependencies and configu-
rations required for their research within a self-contained unit, containers 
allow researchers to create reproducible and isolated environments that  
do not interfere with other research projects. Containers also ensure  
that research projects do not consume unnecessary resources, as only 
the required dependencies are included in the container image, avoiding 
any unnecessary overhead.

Implications for large-scale collaborative efforts
Containerization improves efficiency; teams can standardize their 
development environments, reducing conflicts and improving com-
patibility between different systems53, making it easier to share code 
and resources and to ensure that code written on one system will work 

Images

Docker build Images

Docker pull

Docker run

Docker push

Docker daemon

Containers

Volumes

hello
world

>

Docker client Docker host Docker hub

Fig. 1 | Docker architecture. Docker uses of a client-server architecture, whereby 
the Docker client talks with the docker daemon — a software component that 
runs on the Docker host and helps build, run and distribute containers. The 
Docker client and daemon can run either on the same system or remotely. 
The Docker daemon interacts with Docker Hub through the Docker command-line 

interface client, which provides an interface for users to interact with the Docker 
API. The Docker command-line interface client sends requests to the Docker 
daemon, which then communicates with Docker Hub to pull, push or manage 
Docker images and containers.

https://liftr.me/
https://sylabs.io/
https://podman.io/
https://openshift.com/
https://linuxcontainers.org
https://github.com/rkt/rkt
https://mesos.apache.org
https://fmriprep.org
https://expfactory.github.io
https://expfactory.github.io
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correctly on another. Because containers are platform-independent, 
researchers are also able to work on different platforms, with seamless 
deployment to HPC environments. In HPC environments, it is common 
to have a cluster of machines with different operating systems, different 
versions of libraries and other dependencies; containerization helps  
overcome this problem by ensuring that the application and its depen-
dencies are all included in the container54 and that the container is portable  
and can run on any system with a compatible container runtime49.

Containers can be scaled up or down as needed and they are 
portable, allowing teams to respond quickly to changing demands 
and to work across multiple platforms or locations55,56.The latter 
can be particularly useful for teams that need to move applications 
between different stages of the development or deployment process 
or between different environments such as test, staging and production.

Finally, containers can be easily integrated with collaboration 
tools that allow multiple developers to work on a project at the same 
time, such as Git57. For example, developers can use Git to track changes 
to the application code and its dependencies, and when they are 
ready to share their changes with the team, they can use Git to push 
the changes to a central repository. Other team members can then 
pull the changes and use the containerized application with all its  
dependencies and requirements.

Applications
Containers are being used in a growing number of scientific fields, 
enabling efficient, collaborative forms of research. Here, we describe 
usage in several disciplines — neuroscience, ecology, genomics, astron-
omy, physics and environmental science — with concrete examples of 
container implementations in each case.

Neuroscience
Containers have gained popularity in recent years as a means of pack-
aging and distributing software and code in neuroscience and are 
currently used for a number of applications, such as neuroimaging 
data analysis. Neuroimaging data can be extremely large and com-
plex58,59; using containers, researchers can share tools for neuroimag-
ing analysis, such as MRI processing software or brain connectivity 
analysis tools28,60,61. These developments facilitate the analysis and 
visualization of brain imaging data, as well as sharing reproducible 
results. For example, tools for neuroimaging analysis, including those 
for processing and analysing MRI data, are provided as Docker images 
by the FSL project.

Containers are also used to provide neural simulation software, 
such as NEURON or NEST, to enable running simulations on differ-
ent computer systems and sharing them. Similarly, the NeuroDebian 

Box 2

Getting started with containers
Here we walk you through the steps to get started with containers, 
including how to install the necessary tools and run your first Docker 
container.

Step 1: install a container runtime
To install Docker, follow these steps:

 • Go to the Docker website (docker.com).
 • Follow the instructions to install Docker on your machine. This will 
typically involve downloading an installer and running it on your 
machine.

Step 2: pull a container image
Once you have installed Docker, you can start pulling container 
images from a public registry, such as Docker Hub, or you can also set 
up your own private registry. To pull a container image from Docker 
Hub, use the following command:

$ docker pull <image name>:<tag>

Images on Docker Hub are typically tagged with version information or 
other identifiers to help ensure reproducibility of research workflows. 
It is important to specify a specific tag when pulling an image to 
ensure that you get the same version every time. For example, to pull 
the latest version of the Ubuntu environment, you would run:

$ docker pull ubuntu:latest

Step 3: run a container
Now that you have pulled a container image, you can run it as a 
container using the following command:

$ docker run <image name>

For example, to run the Ubuntu container that you just pulled, you 
would run:

$ docker run ubuntu

This will start a new container on the basis of the Ubuntu image 
and give you a command prompt inside the container. From here, 
you can run any commands you would normally run on a Ubuntu 
machine.

Step 4: stop and remove a container
When you are finished with a container, you can stop it and remove 
it from your machine using the following command:

$ docker stop <container name>

To remove a container, use the following command:
$ docker rm <container name>

You can find the name of your container by running the docker ps 
command, which will list all running containers.

Step 5: use preset or personalized environments
For most research projects, we want to have a whole environment 
setup with all tools and dependencies needed for the entirety of the 
project. Many preconfigured Docker images exist for such purposes, 
but you can also create an environment from scratch to suit your 
personalized research needs and then save it into your own Docker 
image, which can then be used by collaborators. Detailed, step-by-
step instructions on how to do this have been published elsewhere102. 
See the Docker documentation to learn more.

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://neuron.yale.edu/neuron
https://nest-simulator.org
https://neuro.debian.net
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project provides Docker images for tools for neural data analysis, 
including tools for processing and analysing electrophysiology data62. 
In the area of brain–computer interfaces, containers are being increas-
ingly used to package software tools for EEG analysis software or BCI 
control software. For example, the BCI2000 project provides Docker 
images that facilitate development and testing for brain–computer 
interface systems63.

More generally, containers are also used for data sharing and col-
laboration — as neuroscientists often work with sensitive or proprietary 
data, containers can provide a secure and controlled environment for 
sharing and accessing data, enabling more effective collaborations64. 
For example, containers can be configured to run with limited permis-
sions and user accounts, making it possible to give access to specific 
data only to authorized users. This built-in flexibility enables easy 
collaboration and data processing, while simultaneously providing 
a secure and controlled environment in which data are isolated and 
protected when necessary.

Ecology
In ecology, Docker is often used to run simulations of ecosystem 
dynamics65,66. Containers can be used to package and deploy the 
necessary code and data for running complex ecosystem simula-
tions; for example, the Ecopath with Ecosim project provides Docker 
images for ecological simulation models that can be used to explore the 
impacts of different management scenarios. This allows ecologists to 
easily share and reproduce results67, as well as scale their simulations 
to large compute resources.

Containers can be used to package and distribute software tools 
for data processing and analysis, such as Geographical Information 
System (GIS) software or machine learning libraries. This is often useful 
to analyse and visualize spatial data or to apply machine learning tech-
niques to ecological data. The QGIS project provides Docker images 
for the QGIS GIS software that can be used to analyse and visualize 
spatial data. Containers are also used to share software tools for envi-
ronmental monitoring68, such as sensor networks or remote-sensing 
platforms, making it easier for ecologists to collect and analyse data 
from field sites or to integrate data from multiple sources. For example, 
the Environmental Data Commons project provides Docker images for 
environmental monitoring tools that can be used to collect and analyse 
data from field sites.

Finally, containers can also be used to distribute data manage-
ment and analysis tools, such as databases or data visualization soft-
ware. These help ecologists store, organize and analyse large data 
sets. For example, the EcoData Retriever project provides a Docker 
image for downloading and cleaning up ecological data from various 
sources69. Containers are also central to the packaging and distribution 
of ecological modelling software, such as population dynamics mod-
els or ecosystem models used to build and test models of ecological 
systems. The Ecological Niche Modeling on Docker project provides 
Docker images for ecological modelling in R, including tools for building 
and fitting models and visualizing results.

Genomics
In the field of genomics, containers are routinely used to package 
and distribute software tools for analysing various types of genomic 
data70–72. For example, in the DNA sequencing data analysis, the BioCon-
tainers project73 provides Docker images for tools, including tools for 
read alignment and variant calling. Docker images for tools in the gene 
expression analysis (such as RNA sequencing (RNA-seq) and microarray 

analyses) are provided by the Bioconductor project74. Similarly, Docker 
images for tools in population genetics and evolutionary analyses are 
provided by the EIGENSOFT project.

For genome annotation, the GFF3 Tools project75 provides Docker 
images for tools such as gene prediction software and functional anno-
tation tools, whereas Docker images for tools for structural variation 
analysis, such as copy number variation analysis software and trans-
location detection tools, are provided by the Breakdancer project. 
A number of projects provide Docker images for tools for functional 
genomics, such as gRNA design and validation to aid in CRISPR-related 
research76.

Table 2 | Docker, Singularity and Podman feature comparison

Feature Docker Singularity Podman

Container runtime Yes Yes Yes

Container image 
management

Yes Yes Yes

Container 
orchestration

Yesa No No

Support for multiple 
operating systems

Yes Yes Yes

Integration with 
scientific workflow 
tools

Yesb Yesb Yesb

Support for 
reproducible 
research

Yesc Yesc Yesc

Support for data 
managementd

Yese Yese Yese

Compatibility with 
Docker images

Yes Yes Yes

Support for legacy 
softwaref

Yesg Yesg No

Support for OS-level 
virtualization

No Yes No

Rootless mode No Yes Yes

Build-time 
customization

Yes No Yes

Image format Docker Image 
Format (DIF)

Singularity 
Image Format 
(SIF)

OCI Image 
Format

Security features User 
namespaces, 
AppArmor 
profiles

Run containers 
as unprivileged 
users

Seccomp 
support

Networking and 
storage options

Docker 
networking

Custom 
networking 
options

Host system 
networking with 
custom options

Ecosystem and 
community

Large and mature Limited but 
growing

Limited but 
growing

OCI, Open Container Initiative. aVia tools such as Docker Swarm and Kubernetes. bVia tools such 
as Snakemake, Nextflow, WholeTale, Binder and CodeOcean. cVia tools such as WholeTale, 
Binder and CodeOcean. dData management refers to the process of collecting, storing, 
organizing, preserving, maintaining and using data in a way that ensures its quality, security, 
accessibility and reliability over time. eVia tools such as DataLad and XNAT. fLegacy software 
refers to software that is no longer being actively developed or maintained or to software that 
was written for an older operating system or hardware architecture. gVia tools such as Shifter.

https://bci2000.org/
https://ecopath.org/
https://qgis.org
https://edc.occ-data.org
https://ecologicaldata.org/node/42
https://github.com/ghuertaramos/ENMOD
https://biocontainers.pro
https://biocontainers.pro
https://bioconductor.org
https://hsph.harvard.edu/alkes-price/software/eigensoft
https://github.com/genome/breakdancer
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Containers can also be used to share tools for the RNA-seq analy-
sis71,77,78, such as read alignment tools or expression quantification 
software, facilitating the analysis and interpretation of RNA-seq data. 
Some examples of tools that can be packaged in containers for RNA-seq 
analysis include STAR79,80 and Salmon81. Recently, containerized soft-
ware has been developed to share tools for epigenomics analysis, such 
as DNA methylation analysis software or chromatin accessibility tools, 
including Bismark and ATAC-seq Pipeline82.

Finally, containerization has a central role in the development of 
tools for analysing genetic variation data, such as single-nucleotide vari-
ant calling software or structural variation detection tools83–85. These 
include tools for genetic variation analysis such as GATK and SVTyper.

Astronomy
Containers are increasingly being used in the field of astronomy, making 
it easier for astronomers to access and use specialized software and data 
and enabling reproducibility and collaboration86–88. One application of 
containers in astronomy is the packaging and distribution of software 
tools for analysing astronomical data. The Astropy project89 provides 
a Docker image for the Astropy python library, which is a widely used 
toolkit for astronomy and astrophysics and includes tools for handling 
and manipulating astronomical data, such as reading and writing FITS 
files, performing coordinate transformations and fitting models to data. 
By packaging the Astropy library in a container, astronomers can seam-
lessly install and use the library on their own systems, while minimizing 
issues with dependencies or conflicts with other software89,90.

Astronomy research often involves the use of specialized software 
and data that may be difficult to obtain or install. By creating a Docker 
image that includes all the necessary software and data, astronomers 
can share their research environment with others, enabling them 
to reproduce and verify results of each other. The Sloan Digital Sky 
Survey provides Docker images91 to facilitate reuse by astronomers 
and astrophysicists, whereas the Marble Station project provides a 
Linux environment with spectroscopic and photometric tools that are 
commonly used in astronomy.

Finally, containers can be used in astronomy to facilitate collabo-
ration and data sharing92. The SciServer project provides a scalable 
collaborative data-driven science platform for astronomers and other 
scientists, using a Docker-based architecture87. SciServer enables 
astronomers to access and work with data stored on the platform, 
regardless of their own computing environment.

Physics
Containers have been used in the field of physics for some time, mainly 
to distribute software tools for analysing physics data93,94.The CERN 
Container Registry provides container images for various tools and 
libraries that are commonly used in particle physics, including software 
for analysing particle collision data and simulations. Physics research 
often involves the use of specialized software and data that may be 
difficult to obtain or install. By creating a container image that includes 
all the necessary software and data, physicists can share their research 
environment with others, enabling them to reproduce and verify 
results of each other. GEANT4 (ref. 95), also developed by CERN, offers 
resources for simulating the passage of particles through matter, with 
practical uses in high-energy, nuclear and accelerator physics. The LIGO 
Open Science Center96 provides a Docker image for the LIGO Data Grid, 
a cloud-based platform for storing and accessing data from the LIGO 
gravitational wave detectors, so as to allow physicists to work with data 
stored on the LIGO Data Grid.

Environmental science
Containers are increasingly relevant to the field of environmental 
science; the Planet Research Data Commons for environmental and 
earth science research provides container images for various tools 
and libraries that are commonly used in environmental science, includ-
ing software for analysing data on air quality, water quality and land 
use. These tools are designed to help address important environmental 
issues such as adapting to climate change97, saving threatened species98 
and reversing ecosystem deterioration99.

A related application is for the reproducibility of research envi-
ronments. For example, the EarthData project provides container 
images for various tools and data that are commonly used in environ-
mental science, including software for analysing data from satellites 
and remote-sensing instruments, and data sets such as the NASA Earth 
Observing System data100. GRASS GIS — a free and open-source GIS 
software — can be used for data analysis, visualization and spatial 
modelling. The GRASS GIS container image provides a preconfigured 
environment for running GRASS GIS, including all necessary dependen-
cies, libraries and configurations. Similarly, GeoServer is a container 
that provides a preconfigured environment for running analyses on 
geospatial data and enables data processing, analysing and sharing. 
Together, these tools facilitate collaboration between environmental 
scientists worldwide101.

Reproducibility and data deposition
Providing reproducible content is a fundamental aspect of scientific 
research and has been discussed at length elsewhere, either generally23 
or in the context of containerization102,103. Here, we focus on best prac-
tices for sharing containers, commenting and documenting and elabo-
rate on how these can help communicate and disseminate research 
findings to maximize their value.

Sharing containers
Containers can help researchers share their work with co-workers, 
regardless of the underlying hardware or operating system, and help 
improve the reproducibility of research results104. By providing a 
consistent environment for running experiments, researchers can 
ensure that their results are not affected by differences in hardware or 
software configurations. This can be particularly important in fields 
such as machine learning or data analysis, in which small differences 
in environment can lead to significant differences in results105,106. Shar-
ing both the Dockerfile and the Docker image when sharing contain-
ers is considered best practice because it allows others to reproduce 
the exact same environment and configuration of the containerized 
application. However, simply having a Dockerfile does not guarantee 
the same build every time. There are several factors that can affect the 
build, such as the version of the base image, the availability of pack-
ages or the version of the software used. A Dockerfile may be created 
that specifies the base image and includes instructions to install the 
required versions of dependencies, as well as instructions to copy 
the source code of the application into the container to configure the 
environment variables. If other researchers use different versions of 
the dependencies or if the dependencies are not available, the build 
can be different. Nonetheless, sharing both the Dockerfile and the 
container image is still essential for enabling reproducibility, as it pro-
vides a starting point for other researchers to build upon and modify 
for their own purposes.

To ensure that others can reproduce the exact same build, it is best 
practice to also share the image of the container in a Docker registry 

https://github.com/alexdobin/STAR
https://combine-lab.github.io/salmon
https://www.bioinformatics.babraham.ac.uk/projects/bismark/
https://github.com/ENCODE-DCC/atac-seq-pipeline
https://gatk.broadinstitute.org
https://github.com/hall-lab/svtyper
https://astropy.org
https://github.com/marblestation/docker-astro
https://sciserver.org
https://hub.docker.com/u/cern
https://hub.docker.com/u/cern
https://geant4.web.cern.ch
https://losc.ligo.org
https://losc.ligo.org
https://ardc.edu.au/program/planet-research-data-commons
https://earthdata.nasa.gov
https://grass.osgeo.org
https://geoserver.org
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such as Docker Hub or Quay. Sharing the container in this way allows 
others to download and run it without having to build it themselves, 
which guarantees that they are running the same environment and 
configuration as the original application. In addition, for certain 
applications, sharing the data set used in the training process with 
the container could be both useful and facilitate reproduction of 
simulations or experiments. It is worth pointing out that it is possible 
to construct Dockerfiles to be reproducible, for example, by freezing 
older versions of container images using RStudio Package Manager, 
yet even so images that are not pulled by anyone from Docker Hub for 
extended periods of time get purged, and Dockerfiles are not guaran-
teed to build indefinitely. Alternatives to specialized registries exist 
for sharing containers; for example, researchers can also use a cloud 
platform such as Amazon Web Services or Google Cloud Platform to 
host and share containers. These platforms provide tools for building, 
storing and distributing containers and can be useful for sharing large 
or complex containers.

Finally, researchers can implement more advanced workflows 
to build and share their work, for example, by generating automated 
Docker builds. One common approach to do that is to configure auto-
mated builds in Docker Hub, which will re-build an image whenever 
changes are pushed to the source code repository. The advanced 
features of Docker Compose — a tool that allows defining and run-
ning multicontainer applications — can help implement automated 
builds when dealing with multiple containers. Similarly, Jenkins is a 
commonly used open-source automation server that facilitates auto-
mation of diverse tasks such as creating and launching Docker images. 
A Jenkins pipeline can be set up that will build an image and push it 
to a registry when certain conditions are met, like when changes are 
pushed to the source code repository. Alternatively, GitHub Actions 
is a Continuous Integration/Continuous Deployment (CI/CD) platform 
that allows developers to automate their workflow on GitHub such 
as building and testing code, deploying code to different environ-
ments and managing dependencies. GitHub Actions allows creat-
ing custom workflows that are triggered by events such as commits, 
pull requests and releases and has been implemented successfully in 
research workflows107. Other options include TravisCI, GitLabCI and 
CircleCI — all CI/CD tools specifically designed for automating the 
software development process and provide integration with various 
services, including Docker.

Best practices in commenting and documenting
Containers are self-contained units of software that include all of the 
dependencies and resources needed to run an application and, as 
such, they can be complex and difficult to understand. For research 
development projects, effective commenting and documentation are 
essential. Commenting refers to explanations, descriptions and notes 
within the source code, which aids in understanding the purpose of the 
code, whereas documentation, which is typically external to the code 
and presented in the form of a README file or user manual, provides 
additional details103. Proper commenting and documentation can help 
make containers more readable and maintainable and facilitate the use 
and utility of containerized software108. Table 3 provides important best 
practices for commenting and documenting in the process of sharing 
containers. By following these best practices and using appropriate 
tools, researchers can share their containers with others seamlessly and 
effectively. In addition to these general best practices, it is also impor-
tant to follow any required field-specific guidelines or conventions 
(F1000Research guidelines)109–111.

Communication and dissemination of research findings
Containers can facilitate the communication and dissemination of 
findings in a number of ways. First and foremost, they allow researchers 
to share their software applications with other researchers, regardless 
of the operating system or hardware being used, allowing for greater 
collaboration and the potential for faster progress in their respec-
tive fields. Containers also allow for the creation of fully reproduc-
ible research environments, ensuring that findings can be accurately 
replicated and verified. In addition, containers make it easier for 
researchers to publish their findings in an accessible format by creat-
ing a self-contained package that can be easily deployed and run by 
anyone with access to the container.

Containers have emerged as a promising approach for archiving 
research software alongside a publication. Many computing-focused 
archives, such as the ACM Digital Library, offer services for archiving 
research software. However, the adoption of such services has been 
low, and there is a need for better archiving practices that can ensure 
long-term preservation and reproducibility of research software. 
Containerization can offer several advantages for archiving research 
software. By encapsulating all dependencies and configurations of 

Table 3 | Best practices for commenting and documenting 
containers

Best practice Example

Clearly document the 
purpose of the container

# This container provides a preconfigured 
environment for running the my-science-app 
application

Include detailed instructions 
for how to use the container

# To use this container:
# 1. Pull the image from the Docker registry:
$ docker pull myusername/my-web-app

# 2. Run the container: docker run -p 
8080:80 myusername/my-web-app

# 3. Access the app at http://localhost:8080

Provide example usage or run 
commands

# Here is an example of how to run the 
container with a custom configuration file:
$ docker run -p 8080:80 -v/path/to/
config:/etc/my-web-app myusername/
my-web-app‘

List any environment 
variables that the container 
expects to be set

# The container expects the following 
environment variables to be set:
# - DB_USERNAME (username for the database)
# - DB_PASSWORD (password for the database)
# - DB_HOST (hostname of the database server)

Document any ports exposed 
by the container

# This container exposes port 80 for HTTP 
traffic

List any external 
dependencies

# This container requires access to a 
MongoDB server running on hostname 
mongodb.example.com

Document any data or 
volume mounts used by the 
container

# This container expects a volume to 
be mounted at /var/www/html for the 
application code

Reference any related 
projects, links or 
documentation

# This container is based on the official Node.
js Docker image, see more details at https://
hub.docker.com/_/node/

Add any version information # Current version: 1.0.0

Add any licensing information # Licensed under the CC BY 4.0 licence

https://quay.io
https://aws.amazon.com
https://cloud.google.com
https://jenkins.io
https://github.com/features/actions
https://f1000research.com/for-authors/article-guidelines/software-tool-articles
https://dl.acm.org
https://hub.docker.com/_/node/
https://hub.docker.com/_/node/
https://creativecommons.org/licenses/by/4.0/
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the software into a single container image, containers provide a self-
contained and portable environment that can be easily shared and 
preserved. Specifically, container images can be archived as part of 
the publication or deposited in a container registry for long-term 
preservation. Moreover, containers allow for the reproducibility 
of research findings by ensuring that the software environment 
remains consistent, even as the underlying infrastructure changes  
over time.

Researchers can ensure effective archiving with containers by 
adopting several recommended practices. This involves using well-
defined and well-maintained container images, with clear documen-
tation on the included software dependencies and configurations. 
Additionally, all software dependencies and configurations should 
be well documented, including versions of libraries, software and 
operating systems. Widely used and supported container formats, 
such as Docker, Singularity or Podman, should be chosen on the basis 
of target archive or repository requirements. Metadata and docu-
mentation, such as a README file providing instructions for using the 

container, research software information and licensing details should 
be provided with the container image. Following these best practices, 
archiving research software with containers can be a valuable approach 
for ensuring long-term preservation and reproducibility of scientific 
findings.

Limitations and optimizations
Although containers are powerful and versatile, they also have impor-
tant limitations. In this section, we discuss some of the pros and cons 
of containerization and explore key restrictions. We also discuss com-
patibility with HPC environments, which have become increasingly 
popular among computational research groups.

Costs of containerization
Despite its numerous advantages, there are also some costs associ-
ated with using containers in scientific research112. One of the main 
drawbacks is the learning curve involved in using containerization 
tools and technologies. Researchers need to familiarize themselves 

Glossary

Clusters
Groups of machines that work together 
to run containerized applications.

Compute resources
The resources required by a container 
to run, including central processing 
units, memory and storage.

Containerization platform
A complete system for building, 
deploying and managing containerized 
applications, typically including a 
container runtime, and additional 
tools and services for things such as 
container orchestration, networking, 
storage and security.

Container runtime
The software responsible for running 
and managing containers on a host 
machine, involving tasks such as 
starting and stopping containers, 
allocating resources to them and 
providing an isolated environment 
for them to run in.

Continuous Integration/
Continuous Deployment
(CI/CD). A software development 
practice that involves continuously 
integrating code changes into a 
shared repository and continuously 
deploying changes to a production 
environment.

Dependencies
Software components that a 
particular application relies on to run 
properly, including libraries, tools and 
frameworks.

Distributed-control model
A deployment model in which 
control is distributed among multiple 
independent nodes, rather than being 
centralized in a single control node.

Docker engine
The containerization technology that 
Docker uses, consisting of the Docker 
daemon running on the computer and 
the Docker client that communicates 
with the daemon to execute 
commands.

Dockerfiles
A script that contains instructions for 
building a Docker image.

Environment variables
A variable that is passed to a container 
at runtime, allowing the container to 
configure itself on the basis of the value 
of the variable.

High-performance computing
The use of supercomputers and 
parallel processing techniques to solve 
complex computational problems that 
require a large amount of processing 
power, memory and storage capacity.

Host operating system
Primary operating system running on 
the physical computer or server in 
which virtual machines or containers are 
created and managed.

Image
A preconfigured package that 
contains all the necessary files and 
dependencies for running a piece of 
software in a container.

Namespaces
Virtualization mechanisms for 
containers, which allow multiple 
containers to share the same system 
resources without interfering with 
each other.

Networking
The process of connecting multiple 
containers together and to external 
networks, allowing communication 
between containers and the outside 
world.

Orchestration
The process of automating the 
deployment, scaling and management 
of containerized applications in a 
cluster.

Orchestration platform
System for automating the deployment, 
scaling and management of 
containerized applications.

Port mapping
The process of exposing the network 
ports of a container to the host machine, 
allowing communication between 
the container and the host or other 
networked systems.

Production environment
Live, operational system in which 
software applications are deployed and 
used by end-users.

Runtime environment
Specific set of software and hardware 
configurations that are present and 
available for an application to run on, 
including the operating system, libraries, 
system tools and other dependencies.

Scaling
The process of increasing or decreasing 
the number of running instances of 
a containerized application to meet 
changing demand.

Shared-control model
Deployment model in which a single 
central entity has control over multiple 
resources or nodes.

Volumes
A storage mechanism for containers, 
which allows data to persist outside the 
file system of the container, including 
after a container has been deleted or 
replaced.
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with containerization concepts, such as images, containers and 
registries, as well as how to use tools such as Docker to manage 
and deploy containers. This can require a significant amount of 
time and resources, especially for researchers who are new to con-
tainerization. To address this challenge, it is often helpful to start 
with the basics, that is, focusing on understanding the concepts 
and fundamentals of containerization, such as what a container is, 
how it works and the benefits of using containers. Getting hands-
on experience creating and running containers using tools such as 
Docker in practice scenarios helps users learn to work with contain-
ers. Online communities dedicated to containerization and related 
technologies, such as forums and social media groups, can provide 
resources, tips and best practices from experienced developers. In 
addition, there are a plenty of online tutorials, books and courses 
available that teach both the basics and more advanced concepts  
of containerization.

Building container images requires a certain level of expertise and 
specialized knowledge, which can be challenging and time-consuming 
to obtain. In addition, building, testing and deploying container images 
can require dedicated staff, infrastructure and resources — these can 
include servers, storage and networking, as well as the orchestration 
software needed to manage and deploy the containers. These resources 
come at a cost, which can increase when scaling and maintaining the 
infrastructure.

In addition to the cost of infrastructure and resources, there are 
also sustainability costs associated with the use and maintenance of 
containers. The energy consumption of containerized workloads can 
be substantial, as they require server and networking infrastructure 
to support their operation. Serverless computing — a cloud comput-
ing model that allows developers to deploy and run code without 
the need to manage infrastructure — has been proposed as a way to 
mitigate these costs via dynamic allocation of computing resources 
on the basis of current workload demands. However, it is important 
to note that the suitability of serverless computing for long-running 
computations in scientific research may depend on various factors, 
such as the specific requirements of the computation, the avail-
able budget and trade-offs among cost, performance and conveni-
ence. For certain types of computations or workloads, serverless 
computing may still be a viable option, especially when considering 
factors such as ease of deployment, automatic scaling and reduced  
operational overhead.

In most cases, the benefits of using containers in scientific research 
outweigh the costs of learning and managing containerization tools 
and technologies. Containers are often seen as a middle ground 
between the lightweight and easy-to-use nature of package manag-
ers and the comprehensive isolation and reproducibility of virtual 
machines. Containers provide a balance between these two extremes, 
offering a higher level of isolation and reproducibility compared with 
package managers, while being more resource-efficient and port-
able than virtual machines. This is one of the reasons containers have 
become widely adopted in various contexts such as continuous inte-
gration, industry and cloud use and increasingly in research, in which 
reproducibility, portability and resource efficiency are crucial factors 
for success. However, it is important for researchers to carefully con-
sider their needs and resources when deciding whether to use contain-
ers in their research projects. One important aspect to consider is the 
current efficiency of the research workflow and how it can be influenced 
by containerization. We now turn to specific limitations and concrete 
solutions to build more efficient workflows in scientific research.

Limitations of containerization
Containerization may not be suitable for certain types of research 
that depend on the kernel level or on hardware. This can be a particu-
lar issue for machine learning workflows that rely on GPU accelera-
tion, as containers may not be able to access the necessary hardware 
resources30,32, because they are designed to be hardware-agnostic and 
rely on the kernel of the host system to interface with hardware. As a 
result, the host operating system kernel version and configuration 
can have an impact on the behaviour and performance of containers. 
For example, if a container requires a specific kernel feature that is 
not available in the host operating system kernel, it may not function 
correctly or may require modifications. Similarly, if the host operat-
ing system kernel has specific security settings or restrictions, they 
may apply to containers as well. This can be a challenge for machine 
learning workflows that require access to specialized hardware such as 
GPUs, as containers may not have direct access to these resources. It is 
therefore important to consider the compatibility and dependencies 
of the host operating system kernel when working with containers to 
ensure proper functionality and reproducibility.

There are several solutions that can be implemented to address 
these potential limitations. Containerization technologies exist that 
can facilitate better access to host resources, such as Podman or Singu-
larity (Table 2). By allowing the containers to run as regular processes 
on the host operating system, without requiring a separate daemon 
or root privileges, these tools provide a more native experience and 
facilitate access to host resources more directly and efficiently. This 
can be especially important for low-level access to system resources, 
such as kernel-level features or hardware devices. By contrast, Docker 
relies on a daemon process to manage container execution, which can 
introduce additional layers of abstraction and potential performance 
overhead. In addition, Docker containers typically run as the root user 
by default, which can pose security risks and limit access to certain 
system resources. As a best practice, it is recommended to set the USER 
in Docker containers to a non-root user to mitigate potential security 
risks and restrict unnecessary access to system resources, following 
the principle of least privilege. This can help improve the security 
posture of Docker containers and reduce the risk of unauthorized 
access or exploits.

If specific access to the kernel or to hardware resources is required, 
it is also possible to use virtual machines, which can provide access to 
host resources through virtualization (Table 1). The choice between 
containerization and virtual machines does not have to be dichoto-
mous; however, hybrid solutions exist, such as running a containerized 
application on top of a virtual machine, which allows the container-
ized application to have the portability and isolation benefits of con-
tainerization while also having access to the host resources through 
the virtual machine.

It may not always be possible to fully replicate the environment 
in which research was conducted, which can be particularly chal-
lenging when using containers to replicate research environments 
with complex dependencies or that rely on specific hardware con-
figurations113. In these cases, it may be difficult to fully replicate the 
environment using containers, which can limit the reproducibility of 
the research. Specific resources can help make the environment more 
portable and reproducible; for example, Platform as a Service (PaaS) 
is a cloud computing service that allows developers to create, launch 
and manage applications without the need to handle the underlying 
infrastructure. Examples include Heroku, Google App Engine and 
Microsoft Azure. PaaS can provide resources, scaling and dependency 
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management, which can help make the environment more portable 
and reproducible. Similarly, Infrastructure as a Service (IaaS), a cloud 
computing service, offers virtualized computing resources, such as 
storage, networking and virtual machines. Some examples of IaaS 
providers are Amazon Web Services, Microsoft Azure and Google 
Cloud Platform. IaaS gives users additional control over the underly-
ing infrastructure, including hardware and operating system, and 
can configure it to match the desired environment for their research. 
Alternatively, hardware abstraction layer (HAL) is a layer of software 
or hardware that abstracts the underlying hardware and operating 
system, allowing applications to run in a more isolated and portable 
manner. HAL can help isolate the application and its dependencies 
from the underlying hardware and operating system, providing a 
consistent environment for reproducible research. Containerization 
technologies such as Docker can be considered as a form of HAL, as 
they abstract the underlying host system and provide a consistent 
environment for running applications.

Containers can introduce additional complexity to research 
workflows, as researchers may need to manage and maintain multiple 
containerized environments. This can be time-consuming and may 
require additional training and support for researchers. Container 
orchestration tools such as Docker Swarm or Kubernetes can help 
manage this complexity by providing an abstraction layer that simpli-
fies the process of deploying and scaling containers. Docker Swarm 
and Kubernetes handle both Embarrassingly parallel (EP) and non-EP 
workflows. EP workflows refer to workflows that can be parallelized 
and run in isolation, in which each task can be executed independently 
of the others, making them well suited for container orchestration. 
Non-EP workflows, on the contrary, have interdependent tasks that 
require coordination and communication between containers, which 
can be more challenging to manage. The two orchestration tools may 
require different configurations and setups depending on the workflow 
requirements.

For deployment, Docker Swarm uses a shared-control model, 
whereas Kubernetes uses a distributed-control model. Docker Swarm 
is tightly integrated with the Docker ecosystem and is optimized for 
use with Docker containers. Kubernetes, on the contrary is more flex-
ible and can work with any container runtime, not just Docker. Both 
Docker Swarm and Kubernetes can scale to thousands of nodes, but 
Kubernetes has better support for autoscaling and can scale appli-
cations more quickly. Kubernetes has a wider range of features and 
capabilities, including support for rolling updates, resource quotas 
and pod security policies. Docker Swarm has fewer features but is 
generally easier to use and set up. Overall, Kubernetes is generally 
considered to be a more powerful and feature-rich platform, but it 
can be more complex to use, whereas Docker Swarm is a good choice 
for users who want a simpler, more streamlined solution for container  
orchestration.

Researchers are starting to incorporate containers into larger 
workflow management systems, which provide a framework for orches-
trating and executing complex scientific workflows. Workflow manage-
ment systems such as Nextflow, CWL and Snakemake, among others, 
have gained traction in the scientific community owing to their support 
for containerization114. Automation tools such as Ansible, Puppet and  
Chef can be used to automate the process of building, deploying  
and managing containers. Researchers can also rely on container man-
agement platforms such as Google Kubernetes Engine or Amazon 
Elastic Container Service to access a user-friendly interface for man-
aging containers. For optimal results, it is important to consider the 

specific requirements of the research and the size and structure of the 
organization when selecting and implementing a solution.

Adapting containers to HPC environments
Challenges can also arise when attempting to deploy containers 
over HPC environments115,116. These environments typically consist 
of clusters of computers with powerful processors, large amounts of  
memory and high-speed interconnects that allow the computers to 
work together in a coordinated way. They are often used to solve prob-
lems that require large amounts of data processing or simulations that 
would be too time-consuming or impossible to perform on a single 
computer. Yet, the complexity HPC often produces also adds hurdles 
to containerization. For example, containers can introduce overhead 
when compared with traditional virtualization technologies, as they 
run isolated processes and require additional system resources to 
manage the containers. Although containers are generally considered 
lightweight compared with virtual machines, this can result in higher 
overhead when running performance-critical workloads on HPC sys-
tems. However, the lightweight nature of containers can also improve 
resource utilization, as multiple containers can be run on the same host 
without significant performance degradation. This trade-off between 
overhead and resource utilization should be carefully considered when 
deciding whether to use containers for HPC workloads. Furthermore, 
the degree of isolation containers provide between different applica-
tions and their dependencies may not be sufficient for all HPC work-
loads that require tight control over system resources such as CPU, 
memory and input/output (I/O).

HPC environments can also lead to limitations in terms of com-
patibility, as these systems typically have complex and specialized 
infrastructure — such as parallel file systems — that may not be easily 
integrated with container technologies. This architecture can lead to dif-
ficulties when trying to use containers in HPC environments. Scalability 
can also be an issue, as HPC environments may in some instances not 
be well suited for running large numbers of simultaneously executing 
containers on a shared infrastructure. Finally, in university and research 
settings, HPC environments may require additional security measures 
to protect against unauthorized access, especially when dealing with 
sensitive patient-level data or patent information. In this context, con-
tainers can pose security risks, as they may not provide the same level of 
isolation and control as traditional virtualization technologies.

Despite these challenges, the use of containerization in HPC 
environments provides very attractive features and opportunities for 
researchers. One of the main advantages of using containers in HPC 
environments is their portability117, which allows HPC workloads to be 
deployed on a wide range of hardware and operating systems, without 
the need to worry about compatibility issues or manual configuration. 
This can greatly simplify the process of deploying and managing HPC 
applications, especially in large-scale environments in which there may 
be many different hardware configurations and operating systems 
in use. Containers also improve resource utilization in HPC environ-
ments118; because they are lightweight and only contain the resources 
that are necessary for the application to run, they can be more efficient 
at utilizing hardware resources such as CPU, memory and storage. With 
containers, HPC applications can be more efficiently scheduled and 
run on available resources, potentially improving overall performance 
and minimizing resource contention. Containers can also be used to 
improve the security and isolation of HPC workloads, as dependen-
cies can be isolated from the rest of the system, reducing the risk of 
interference or conflicts with other applications. Finally, although HPC 
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resources have traditionally been accessed using specialized software 
and protocols, the use of containers can allow researchers to access HPC 
resources in a more cloud-native way119, that is, in a way that is similar to 
how one would access cloud computing resources. This increases flex-
ibility and scalability in a user-friendly way, in contrast to strict reliance 
on specialized software and protocols. For example, by using contain-
erized workflows and tools such as Singularity, researchers can access 
HPC resources using familiar container orchestration tools and APIs, 
such as those provided by Kubernetes120, making it easier for research-
ers to access and manage HPC resources, allowing a seamless integra-
tion with other tools and services. Additionally, the use of containerized 
workflows can enable researchers to scale their workloads more easily 
across HPC resources, as containers can be seamlessly transferred and 
executed on different HPC systems. This can be particularly useful for 
researchers who need to run large-scale simulations or data analyses 
that require significant computing resources.

There are several tools and platforms available that can be used 
to support the use of containers in HPC environments34. For example, 
the Open Container Initiative is a standard for building and running 
containerized applications and is supported by a range of container 
engines and orchestration tools such as Docker, Kubernetes and Mesos. 
These tools can be used to manage and deploy containerized HPC 
applications at scale, allowing organizations to take advantage of the 
benefits of containerization in their HPC environments.

Outlook
Containers offer many benefits for scientific research, including the 
ability to package and distribute software and data in a consistent and 
portable manner, enabling reproducibility and collaboration and facili-
tating the use of cloud computing121. As the use of containers becomes 
more widespread, it is likely that they will become an increasingly 
important tool in scientific computing. Containers can make it easier 
for scientists to access and use specialized software and data and can 
facilitate the sharing and reproducibility of research environments122. 
This may lead to the development of new container-based tools and 
platforms specifically designed for scientific computing.

Containers will also become more and more useful in data-
intensive research, in which large amounts of data are generated and 
analysed, and uptake in this space is expected to increase123–125. By using 
containers to package and distribute data analysis tools, scientists can 
easily share and reproduce their results and can also take advantage of 
the scalability and flexibility of cloud computing126. As scientists rely 
more and more on automated and reproducible research workflows, 
it is also likely that they will increasingly turn to containers to package 
and distribute these workflows. We have discussed a few of the available 
platforms and repositories in this article, but options will undoubtedly 
grow quickly in the future, as containers continue to have an important 
role in scientific research.

Container orchestration tools such as Kubernetes and Docker 
Swarm will further enable scientists to deploy and manage complex 
research workflows across multiple machines, improving the efficiency 
and scalability of their research127. These platforms allow researchers to 
deploy and manage their scientific applications and tools and enable the 
creation of scalable and fault-tolerant environments for running experi-
ments and simulations, thus allowing researchers to prioritize and allo-
cate resources to their most important tasks. Tools such as containerd 
and Docker Composed are helping to change the landscape of pos-
sibilities in containerization, providing convenience and enhancing 
capabilities for users. Containerd is an open-source container runtime 

that is designed to be lightweight and modular, which is becoming 
increasingly popular for managing containers in cloud environments, 
particularly in conjunction with Kubernetes. Docker Compose is a tool 
that allows developers to define and run multicontainer applications 
using a simple YAML configuration file, simplifying the definition and 
management of complex containerized environments.

Other recent developments such as Dev Containers are likely to gain 
prominence in the research space. Dev Containers allow specifying the 
container environment to use in conjunction with GitHub Codespaces, 
a feature that facilitates creating new development enviro nments in the 
cloud — directly within GitHub — with the specific versions of languages, 
frameworks and tools that are required for a project. Dev Containers 
are defined using a configuration file called a ‘devcontainer.json’ file, 
which specifies the container image that should be used, along with 
any additional configuration options such as environ ment variables, 
volumes and ports. These files automatically launch the container 
environment in the codespace, allowing researchers to switch between 
different container environments.

Finally, recent developments in cloud are changing the way con-
tainers are being used and shared. Specifically, the trend towards 
building cloud-native applications, which are designed to be scalable 
and resilient, has led to the adoption of containerization to package and 
deploy these applications. Cloud-native applications often use micro-
services architecture, which relies on containers to manage individual 
components and services. Relatedly, serverless computing is often 
used in conjunction with containerization to package and deploy code 
in a more efficient and scalable manner. Together, these features can in 
turn allow researchers to effortlessly scale their computations across 
multiple machines, potentially improving the efficiency and speed of 
their research.

The implications of containerization are vast and far-ranging and 
could impact the whole ecosystem of scientific research. Containers 
have the potential to heavily influence scientific publishing, via tools 
such as WholeTale128, Binder and CodeOcean, which are designed to 
facilitate the integration between published research and container-
ized research129. These tools enable researchers to create and share 
reproducible research environments using containers and provide 
platforms for publishing and sharing research that is based on contain-
ers, with additional features and functionality specifically designed for 
reproducible research above and beyond those available with Docker. 
It is also possible that funding agencies will recognize the value of 
containerization to ensure quality and reproducibility of scientific 
research130,131 and thus require containerization for funded projects in 
the future. This may necessitate the development of new infrastructure, 
training and support for researchers — factors that funders will need to 
consider to successfully implement a requirement for containerization 
in scientific research.

In our view, the use of containerization in scientific research is a 
natural evolution that is likely to become standard practice132. Con-
tainerization is booming, with constant innovation and development, 
and has become the norm in fields such as software development and 
engineering133. There is no reason scientists should not leverage this 
tool to improve scientific practices, as well as the quality and impact 
of their research. Many scientists already share data and materials 
with their publications12,134–136 — containerization is the next natural 
step in this direction102,137, with the potential to revolutionize scientific 
research and discovery.

Published online: xx xx xxxx
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