
Nature Reviews Methods Primers | (2023) 3:50 1

nature reviews methods primers https://doi.org/10.1038/s43586-023-00236-9

Primer

0123456789();:

 Check for updates

Containers for computational
reproducibility
David Moreau   1 , Kristina Wiebels1 & Carl Boettiger   2

Abstract

The fast-paced development of computational tools has enabled
tremendous scientific progress in recent years. However, this rapid
surge of technological capability also comes at a cost, as it leads to an
increase in the complexity of software environments and potential
compatibility issues across systems. Advanced workflows in processing
or analysis often require specific software versions and operating
systems to run smoothly, and discrepancies across machines and
researchers can impede reproducibility and efficient collaboration.
As a result, scientific teams are increasingly relying on containers
to implement robust, dependable research ecosystems. Originally
popularized in software engineering, containers have become common
in scientific projects, particularly in large collaborative efforts. In
this Primer, we describe what containers are, how they work and the
rationale for their use in scientific projects. We review state-of-the-
art implementations in diverse contexts and fields, with examples in
various scientific fields. Finally, we discuss the possibilities enabled by
the widespread adoption of containerization, especially in the context
of open and reproducible research, and propose recommendations
to facilitate seamless implementation across platforms and domains,
including within high-performance computing clusters such as those
typically available at universities and research institutes.

Sections

Introduction

Experimentation

Results

Applications

Reproducibility and data
deposition

Limitations and optimizations

Outlook

1School of Psychology and Centre for Brain Research, University of Auckland, Auckland, New Zealand.
2Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley,
CA, USA.  e-mail: d.moreau@auckland.ac.nz

https://doi.org/10.1038/s43586-023-00236-9
http://crossmark.crossref.org/dialog/?doi=10.1038/s43586-023-00236-9&domain=pdf
http://orcid.org/0000-0002-1957-1941
http://orcid.org/0000-0002-1642-628X
mailto:d.moreau@auckland.ac.nz

Nature Reviews Methods Primers | (2023) 3:50 2

0123456789();:

Primer

are provided in the Docker ecosystem, for which a brief overview is
provided.

Introducing containers
A container is a self-contained and executable package that includes
all of the necessary components for running a software application,
such as system tools, libraries settings and the application itself, as
well as any operating system components that are not provided by
the host operating system. This means that containers are completely
isolated from one another and the host operating system, and they can
run anywhere, regardless of the environment. Applications can then
be run consistently across different environments, including different
operating systems and hardware configurations. Specifically, contain-
ers work by packaging an application and its dependencies into a single
container image, which can then be run on any host that has a container
runtime installed. The container runtime handles the execution of the
application and manages the resources it requires, such as memory
and central processing units (CPUs).

One of the main advantages of using containers is their port-
ability. Because containers include all dependencies of an applica-
tion, they can be moved between different environments. This allows
developers to build and test applications on their own machines and
then deploy them to other environments without worrying about
compatibility issues. Containers take up less space and require fewer
resources than traditional virtual machines (see Table 1 for a com-
parison of virtual machines and containers), making them well suited
for use in cloud computing environments33. Containers also isolate
applications from each other and the host system, which help prevent
conflicts between applications. In addition, modern language-based
package management tools, such as Python virtual environments,
offer a solution to further reduce the chances of encountering depend-
ency conflicts even within a container. Python virtual environments
enable developers to create isolated environments with their own
sets of dependencies, configuration and settings for each project.
This means that even if multiple containers are running on the same
host, each container can have its own Python virtual environment with
its specific dependencies, avoiding conflicts and ensuring smooth
operation.

The selection of virtual machines or containers depends on the
specific needs and requirements of the application or process. Histori-
cally, virtual machines have been preferred when the research requires
a highly isolated environment, for example, when the integrity of
the research data and environment is critical, such as in medical or
pharmacological research. Virtual machines offer fundamentally
more isolation than containers, which can be an advantage in certain
situations. However, developments in container technology such
as namespaces, SELinux and AppArmor have improved container
isolation and made them suitable for a wider range of research applica-
tions. Namespaces, for instance, have been a key enabling technology
for containerization, and are now well established. In addition, tech-
nologies such as Singularity30 and Shifter34 have provided concrete
solutions for accessing specific hardware resources, such as graph-
ics processing units (GPUs) or HPC clusters. In general, the choice
between virtual machines and containers will depend on the specific
needs of the researcher and the degree of isolation required for the
given application or process.

Containers are often preferable in most practical cases, especially
in situations in which a researcher needs to run multiple experiments
concurrently. In this case, using containers allows the researcher to

Introduction
In the past few decades, science has become increasingly collaborative,
with modern scientific workflows typically involving multiple people,
often spread across research teams and locations1. The distributed
nature of modern scientific research has had a substantial impact on
scientific discovery, enabling researchers to tackle complex problems
that require a diverse range of expertise and resources, from genomic
sequencing2,3 to epidemiological modelling4 and climate predictions5.
This shift towards incorporating more data and techniques from vari-
ous sources has led to science becoming more computational6–9. Scien-
tists often build upon workflows of each other and share data and code
publicly10,11. Given the tremendous amount of work and effort that often
goes into collaborative projects, reusability is key to enable efficient,
cumulative research and reproducibility has become an inherent part
of modern scientific training12–18.

In this context, computational reproducibility — the ability to
obtain consistent and verifiable results from a computational experi-
ment or analysis when the same input data, code and software envi-
ronment are used — has become central to many research projects.
Although the move towards more collaborative and open practices
is undeniably beneficial to the scientific enterprise19–22, the complex-
ity afforded by shared and predominantly computational scientific
workflows has also brought challenges23. With users distributed across
machines, platforms and software versions, compatibility issues are
bound to arise, with the potential to impede effective use and devel-
opment — an issue colloquially referred to as dependency hell (Box 1).
Collaborators attempting to reproduce or build upon existing work
often face challenges that at best slow down scientific projects or in
extreme cases can prevent reuse or collaboration altogether24,25.

Containers provide an answer to these challenges26. Broadly speak-
ing, containers encapsulate all information needed to run computer
code in a fully configured environment. This includes specific software
versions, as well as their dependencies and operating system configura-
tions27. More specifically, containers solve five major problems associ-
ated with deploying and managing applications in scientific research.
By allowing researchers to package their code, data and dependen-
cies into a self-contained environment, containers solve issues of
reproducibility. Containers also allow researchers to share their work
with others more easily, enabling more efficient collaboration and
faster progress, and run their code on different operating systems
and hardware while circumventing compatibility issues. Containers
can be seamlessly deployed to cloud environments28, enabling seam-
less scalability. Finally, by enabling researchers to allocate resources
more efficiently and avoid unnecessary consumption or conflicts with
other projects, containers allow more efficient project management.

In this Primer, we provide the reader with a comprehensive overview
of containerization in scientific research, including practical use and
implementations, illustrated with examples. We focus on the Docker
ecosystem29 (docker.com), as it is the most common platform used to
build and share containers27, but also discuss alternatives such as Singu-
larity30,31 or Podman32. We consider challenges and limitations, in particu-
lar with respect to efficiency and compatibility with high-performance
computing (HPC) environments, and provide guidance on implemen-
tation. We close with a discussion of the future of containerization and
reproducibility in a rapidly evolving computational environment.

Experimentation
This section introduces containers and provides the basics to run and
personalize containerization from the perspective of a user. Examples

Nature Reviews Methods Primers | (2023) 3:50 3

0123456789();:

Primer

run each experiment in its own container, which can be easily started,
stopped and modified without affecting the other experiments. This
is not possible with virtual machines, which require a separate oper-
ating system for each experiment. Virtual machines also tend to be
much heavier and more resource-intensive than containers, which
can be an important disadvantage in certain scenarios. Similarly, a key
feature of containers over virtual machines is the ability to combine
individual containers together, with each providing a different app.
Containers are also advantageous when a researcher needs to scale
their experiments or share their experiments with co-workers, as
containers contain all the necessary dependencies and configura-
tion settings in a lightweight package. Finally, containers cannot be
matched when it comes to enabling reproducibility in a lightweight
and portable manner: researchers can reproduce their experiments
by creating an identical container with the same dependencies and
configuration settings.

The Docker platform
Containers are built on top of containerization platforms, which pro-
vide a standard format for packaging and distributing applications.
These platforms include tools for creating, managing and deploying
containers. One such platform is Docker, which was designed to make
it easier to create, deploy and run applications by using containers.

We chose to focus on Docker for several reasons. First, Docker is
relatively easy to use; it has a simple and intuitive interface that makes
it straightforward to use and deploy containers. Second, with a vast and
engaged community or users and developers, Docker has become the
de facto standard for containerization, providing thousands of preb-
uilt container images that can be used as a starting point for building
applications, as well as support for addressing challenges that might
arise at any stage of container development. Third, Docker supports
multiple operating systems including Windows, Linux and Mac, mak-
ing it easier to deploy applications across different environments.
Fourth, Docker allows scaling applications up or down on the basis of
demand, making it an ideal choice for cloud-based deployment. Finally,
with its built-in security features such as image signing and container
scanning, Docker ensures the security of applications and prevents
vulnerability, although its seamless integration with other tools enables
the management and deployment of applications at scale.

By allowing developers to abstract away the complexities of the
underlying infrastructure, Docker allows users to focus on writing code,
enabling writing and testing of applications on their own machines and
then deploying them to any environment running Docker. Although
Linux runs within Docker containers, users can access the platform
through a Windows or Mac computer. Docker consists of three com-
ponents: the Docker software, Docker objects and online Docker
registries, such as the Docker Hub (Fig. 1).

The Docker software itself consists of two parts: the Docker client
and the Docker daemon. The Docker client is the primary way that users
interact with Docker. It is a command-line interface that allows users to
issue commands to the Docker daemon, such as building, running and
distributing containers. The Docker daemon is the background
service that manages the containers: it listens for commands from
the Docker client and performs the necessary actions to create and
run containers. The Docker daemon can run on the same host as the
Docker client, or it can be remotely accessed through the network.
In addition to the command-line interface, Docker also provides a
user interface called Docker Desktop, which is available on both Mac
and Windows operating systems. The Docker Desktop user interface

provides a graphical way for users to manage containers, images and
other Docker resources.

The main Docker objects are images and containers. A Docker
image contains everything needed to run a piece of software, includ-
ing the application code, libraries, dependencies and runtime. Docker
images are built from Dockerfiles, which include details on which
base image to use, commands to run and files and directories to copy.
The main difference between Docker images and Docker containers
is that images are static and cannot be changed or modified, whereas
containers are dynamic and can be started, stopped and modified while
they are running (Box 2). Images are used to create containers, but once
a container is created, it can be modified and run independently of the
image that was used to create it.

Box 1

Dependency hell in scientific
research
Dependency hell describes a situation in which a software
application or system becomes dependent on other software
packages, libraries or frameworks, and the dependencies between
these packages become complex and intertwined. This can make
it difficult or impossible to update or maintain the system, as any
changes to one package may have unintended consequences on
others. Dependency hell can also occur when there are conflicts
between different versions of the same dependency, or when one
dependency requires another dependency that is incompatible with
a different dependency in the system. This can lead to problems
such as broken builds, runtime errors or instability in the system.

An example of dependency hell is described as follows:
a researcher is trying to use a specific software (software X), but is
unable to because they lack the appropriate version of a dependent
library (library Y) required to install software X, and the correct
version library Y requires software Z, which in turn requires the
installation of library W, and so on, until all the dependencies
are met for software X. Dependency hell can also arise when
different software packages require different versions of the
same library, creating conflicts that can be difficult to resolve.
Altogether, this issue can be time-consuming and frustrating, and
it can substantially delay progress. Dependencies can be either
internal or external to each software, with the potential for issues
to compound. Internal dependencies are those that are within
the research software itself and can include different modules,
libraries or classes that are part of the software and are used to
perform specific tasks. Internal dependencies are generally easier
to manage and control, as they are part of the research software and
can be developed and maintained by the research team. External
dependencies are dependencies that are not part of the research
software but are required for its use. These can include external
libraries, frameworks and other software packages that the research
software depends on. They can be more challenging to manage as
they are not under the control of the research team and may change
or become unavailable over time.

https://hub.docker.com

Nature Reviews Methods Primers | (2023) 3:50 4

0123456789();:

Primer

Finally, the third Docker component is Docker Hub, a cloud-based
registry service for storing and distributing Docker images. It allows
users to create and share Docker images with others, as well as to dis-
cover and download prebuilt images created by other users. Docker
Hub also provides features such as automated builds, version control
and collaboration tools. It is the default registry for Docker users and
is used by many organizations to store and share their containerized
applications. For readers familiar with the Git ecosystem, one can think
of the relationship between Docker and Docker Hub as that of Git and
GitHub35,36. Alternatives to Docker Hub abound; one very popular is
GitHub Container Registry.

Personalizing containers
Reusing existing containers saves time and effort, but researchers
often need to create personalized containers. Here are some steps
to personalize containers. Personalization of containers requires
identifying the specific software and data to be used, including con-
sideration of programming languages, libraries and packages, as
well as data type, storage and access. The inclusion of a Dockerfile,
which tells the Docker engine what to do when building the image, also
must include the software, libraries and other dependencies needed.
Researchers can also use the ‘docker commit’ command to person-
alize a container by creating a new image from a running container
and modifying it with additional software or configuration changes.
However, it is important to note that using docker commit reduces
visibility and may make the container less reproducible and reliable
than using a Dockerfile.

It is important to emphasize that using language-based package
managers in containers, such as pip for Python or npm for Node.js,
can facilitate the installation of software packages and dependencies
within the container. This helps ensure that the container is reproduc-
ible and reliable, as it allows for fine-grained control over the versions
of packages installed. The resulting Docker image will contain all the
software and data specified in the Dockerfile, as well as any additional
files or resources that were included in the image.

The container runtime can be further customized by setting envi-
ronment variables, mounting volumes and specifying network con-
figurations. The entry point and command can be customized to allow
the specific actions that the container will take upon launch. After a
container has been created, users may want to expose certain ports

from the container to the host system, which allows accessing network
services running inside the container from outside the container. This
is typically done using port mapping, which involves mapping a port
on the host system to a port in the container.

Once built, the container must be tested, and tools such as strace
and gdb are used to debug any issues. By personalizing their containers,
researchers can ensure that their research is reproducible, collabora-
tive and portable, making it easier to share and build upon37. An over-
view of common Docker commands is provided in the Supplementary
information.

Complements and alternatives to Docker
Docker benefits from a rich ecosystem of interrelated components
that are in constant development, owing to its growing popularity. The
Docker ecosystem includes various open-source and commercial tools,
services and technologies that facilitate the development, deployment
and management of containerized applications. It extends the capabili-
ties of the Docker platform and enables integration with other systems
and technologies. These components include Docker Engine (the core
container engine that allows building, running and managing contain-
ers), Docker Compose (a tool for defining and running multicontainer
applications), Docker Swarm (a container orchestration platform for
managing large clusters of Docker nodes), Docker Machine (a tool
for provisioning and managing Docker hosts) and many others, each
serving a specific purpose.

In addition to the core Docker ecosystem, several tools have been
developed that rely on Docker to implement additional functionalities
or features. For example, the Rocker project38,39 provides containers
with environments that can accommodate R users straightforwardly.
It includes tools for building Docker images, creating and managing
containers and automating tasks using shell scripts. Rocker is specifi-
cally designed for scientific research and includes several prebuilt
images for common scientific computing tasks. Similarly, containerit40
makes it easy to package research software and dependencies into con-
tainers and includes tools for building and managing Docker images
and containers. It is intended to be used as a command-line tool and
can help automate the creation of containers for research software.
Both Rocker and containerit are tools that are designed to help scien-
tists create and manage containers for scientific research; Rocker is
geared towards building and managing container-based workflows

Table 1 | Containers versus virtual machines

Feature Containers Virtual machines

Resource
usage

Share the host operating system and the host kernel, making them
lightweight and efficient

Require more resources than containers, as each virtual machine needs
its own copy of the operating system and resources are divided among all
the virtual machines running on the host machine

Deployment Can be deployed and run quickly and smoothly, as they do not
require a full operating system installation

Require a full operating system installation and can take longer to deploy
and run

Portability Highly portable and can run on any host system with the same
architecture — ideal for moving applications between environments

Can also be portable but require virtualization software that must be
installed on each host system, making them less flexible for moving
between environments

Isolation Less isolated; although they share the same operating system
and kernel as the host machine, they are still isolated from one
another and can run different applications and processes. More
lightweight and efficient, as they do not require a separate copy
of the operating system for each container

Completely isolated from one another and the host operating system.
Each virtual machine has its own copy of the operating system and
runs in its own self-contained environment. Useful for creating multiple
environments that need to be separate from one another, such as for
testing or development purposes

Scalability Can be scaled up or down as needed, making them ideal for
applications that require horizontal scaling

Can also be scaled, but it may be more challenging, as adding or removing
virtual machines requires changes to the virtualization environment itself

https://hub.docker.com
https://github.com/features/packages
https://github.com/amrabed/strace-docker
https://github.com/haggaie/docker-gdb
https://rocker-project.org/

Nature Reviews Methods Primers | (2023) 3:50 5

0123456789();:

Primer

for reproducible research, whereas containerit is focused on creating
containers for research software.

Relatedly, the R package liftr41, which uses Docker to containerize
and render RMarkdown documents, can also be used for reproducible
reporting. To make it easier from the perspective of a user, an RStudio
add-in is available, which enables self-contained implementation from
within R. Further guidelines exist on how to build reproducible data
analysis workflows, including via combining tools such as R Markdown,
Git, Make and Docker42.

Although Docker is still the most popular containerization plat-
form with the largest ecosystem and user community, there are other
alternatives available. These include not only Singularity and Podman
but also OpenShift, LXC, Rocket or Mesos. We discuss two popular
alternatives, Singularity (a containerization platform specifically
designed for HPC environments) and Podman (a command-line tool
that is designed to be used in a similar way to Docker but with a few
key differences), in Table 2, including by comparing their features and
functionalities with those of Docker.

Results
By using containers, researchers can address several issues that can
arise over the course of a research project or research programme,
including reproducibility, collaboration, compatibility, scalability
and management. Here, we discuss these five problems in the context
of compatibility across systems, reliability across versions, resource
allocation and the facilitation of large-scale collaboration.

Compatibility across systems
Containers are able to abstract the application from the underlying
hardware and operating system43. This means that the same container-
ized application can be run on various different systems, thus drasti-
cally reducing compatibility issues, allowing researchers to share and
compare data and results. If different systems are not compatible, it can
be difficult to exchange data and collaborate on research projects44,45.

Several advantages of containerization also stem indirectly from
improved compatibility across systems. For example, containers
establish a standard for data storage and analysis, simplifying com-
parison and validation of results. In neuroscience, containerization
has helped implement a standardized functional MRI preprocessing
pipeline known as fmriprep. Similarly, projects such as the Experi-
ment Factory46 in the behavioural sciences have facilitated the use

of Docker containers to ensure that experiments can run smoothly
across platforms.

Reliability across versions
Another benefit of using containers is the ability to ensure reliabil-
ity across different versions of the software47,48. This is particularly
important when it comes to deploying and maintaining applications
in a production environment, as it can be challenging to ensure that the
application will run smoothly and consistently across different versions
of the operating system or other dependencies49.

Containers can help ensure reliability across versions by providing
a consistent runtime environment for the application, regardless of the
underlying operating system or hardware. Containers also provide iso-
lation between different applications and their dependencies, as each
container has its own dedicated resources and is unaware of the exist-
ence of other containers if they are not actively networked together50.
Finally, containers can make it easier to manage and maintain appli-
cations in a production environment29. For example, containers can
be used to automate the deployment and updates of applications51,
ensuring that the correct versions are deployed to the correct locations,
thereby reducing the risk of errors or downtime caused by manual
deployment processes, as well as making it easier to roll back to a
previous version if necessary52.

Resource allocation
Containers streamline resource allocation, reduce resource consump-
tion and minimize conflicts between research projects, facilitating
project management and promoting smooth coordination among
researchers. Because they encapsulate all the dependencies and configu-
rations required for their research within a self-contained unit, containers
allow researchers to create reproducible and isolated environments that
do not interfere with other research projects. Containers also ensure
that research projects do not consume unnecessary resources, as only
the required dependencies are included in the container image, avoiding
any unnecessary overhead.

Implications for large-scale collaborative efforts
Containerization improves efficiency; teams can standardize their
development environments, reducing conflicts and improving com-
patibility between different systems53, making it easier to share code
and resources and to ensure that code written on one system will work

Images

Docker build Images

Docker pull

Docker run

Docker push

Docker daemon

Containers

Volumes

hello
world

>

Docker client Docker host Docker hub

Fig. 1 | Docker architecture. Docker uses of a client-server architecture, whereby
the Docker client talks with the docker daemon — a software component that
runs on the Docker host and helps build, run and distribute containers. The
Docker client and daemon can run either on the same system or remotely.
The Docker daemon interacts with Docker Hub through the Docker command-line

interface client, which provides an interface for users to interact with the Docker
API. The Docker command-line interface client sends requests to the Docker
daemon, which then communicates with Docker Hub to pull, push or manage
Docker images and containers.

https://liftr.me/
https://sylabs.io/
https://podman.io/
https://openshift.com/
https://linuxcontainers.org
https://github.com/rkt/rkt
https://mesos.apache.org
https://fmriprep.org
https://expfactory.github.io
https://expfactory.github.io

Nature Reviews Methods Primers | (2023) 3:50 6

0123456789();:

Primer

correctly on another. Because containers are platform-independent,
researchers are also able to work on different platforms, with seamless
deployment to HPC environments. In HPC environments, it is common
to have a cluster of machines with different operating systems, different
versions of libraries and other dependencies; containerization helps
overcome this problem by ensuring that the application and its depen-
dencies are all included in the container54 and that the container is portable
and can run on any system with a compatible container runtime49.

Containers can be scaled up or down as needed and they are
portable, allowing teams to respond quickly to changing demands
and to work across multiple platforms or locations55,56.The latter
can be particularly useful for teams that need to move applications
between different stages of the development or deployment process
or between different environments such as test, staging and production.

Finally, containers can be easily integrated with collaboration
tools that allow multiple developers to work on a project at the same
time, such as Git57. For example, developers can use Git to track changes
to the application code and its dependencies, and when they are
ready to share their changes with the team, they can use Git to push
the changes to a central repository. Other team members can then
pull the changes and use the containerized application with all its
dependencies and requirements.

Applications
Containers are being used in a growing number of scientific fields,
enabling efficient, collaborative forms of research. Here, we describe
usage in several disciplines — neuroscience, ecology, genomics, astron-
omy, physics and environmental science — with concrete examples of
container implementations in each case.

Neuroscience
Containers have gained popularity in recent years as a means of pack-
aging and distributing software and code in neuroscience and are
currently used for a number of applications, such as neuroimaging
data analysis. Neuroimaging data can be extremely large and com-
plex58,59; using containers, researchers can share tools for neuroimag-
ing analysis, such as MRI processing software or brain connectivity
analysis tools28,60,61. These developments facilitate the analysis and
visualization of brain imaging data, as well as sharing reproducible
results. For example, tools for neuroimaging analysis, including those
for processing and analysing MRI data, are provided as Docker images
by the FSL project.

Containers are also used to provide neural simulation software,
such as NEURON or NEST, to enable running simulations on differ-
ent computer systems and sharing them. Similarly, the NeuroDebian

Box 2

Getting started with containers
Here we walk you through the steps to get started with containers,
including how to install the necessary tools and run your first Docker
container.

Step 1: install a container runtime
To install Docker, follow these steps:

 • Go to the Docker website (docker.com).
 • Follow the instructions to install Docker on your machine. This will
typically involve downloading an installer and running it on your
machine.

Step 2: pull a container image
Once you have installed Docker, you can start pulling container
images from a public registry, such as Docker Hub, or you can also set
up your own private registry. To pull a container image from Docker
Hub, use the following command:

$ docker pull <image name>:<tag>

Images on Docker Hub are typically tagged with version information or
other identifiers to help ensure reproducibility of research workflows.
It is important to specify a specific tag when pulling an image to
ensure that you get the same version every time. For example, to pull
the latest version of the Ubuntu environment, you would run:

$ docker pull ubuntu:latest

Step 3: run a container
Now that you have pulled a container image, you can run it as a
container using the following command:

$ docker run <image name>

For example, to run the Ubuntu container that you just pulled, you
would run:

$ docker run ubuntu

This will start a new container on the basis of the Ubuntu image
and give you a command prompt inside the container. From here,
you can run any commands you would normally run on a Ubuntu
machine.

Step 4: stop and remove a container
When you are finished with a container, you can stop it and remove
it from your machine using the following command:

$ docker stop <container name>

To remove a container, use the following command:
$ docker rm <container name>

You can find the name of your container by running the docker ps
command, which will list all running containers.

Step 5: use preset or personalized environments
For most research projects, we want to have a whole environment
setup with all tools and dependencies needed for the entirety of the
project. Many preconfigured Docker images exist for such purposes,
but you can also create an environment from scratch to suit your
personalized research needs and then save it into your own Docker
image, which can then be used by collaborators. Detailed, step-by-
step instructions on how to do this have been published elsewhere102.
See the Docker documentation to learn more.

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://neuron.yale.edu/neuron
https://nest-simulator.org
https://neuro.debian.net

Nature Reviews Methods Primers | (2023) 3:50 7

0123456789();:

Primer

project provides Docker images for tools for neural data analysis,
including tools for processing and analysing electrophysiology data62.
In the area of brain–computer interfaces, containers are being increas-
ingly used to package software tools for EEG analysis software or BCI
control software. For example, the BCI2000 project provides Docker
images that facilitate development and testing for brain–computer
interface systems63.

More generally, containers are also used for data sharing and col-
laboration — as neuroscientists often work with sensitive or proprietary
data, containers can provide a secure and controlled environment for
sharing and accessing data, enabling more effective collaborations64.
For example, containers can be configured to run with limited permis-
sions and user accounts, making it possible to give access to specific
data only to authorized users. This built-in flexibility enables easy
collaboration and data processing, while simultaneously providing
a secure and controlled environment in which data are isolated and
protected when necessary.

Ecology
In ecology, Docker is often used to run simulations of ecosystem
dynamics65,66. Containers can be used to package and deploy the
necessary code and data for running complex ecosystem simula-
tions; for example, the Ecopath with Ecosim project provides Docker
images for ecological simulation models that can be used to explore the
impacts of different management scenarios. This allows ecologists to
easily share and reproduce results67, as well as scale their simulations
to large compute resources.

Containers can be used to package and distribute software tools
for data processing and analysis, such as Geographical Information
System (GIS) software or machine learning libraries. This is often useful
to analyse and visualize spatial data or to apply machine learning tech-
niques to ecological data. The QGIS project provides Docker images
for the QGIS GIS software that can be used to analyse and visualize
spatial data. Containers are also used to share software tools for envi-
ronmental monitoring68, such as sensor networks or remote-sensing
platforms, making it easier for ecologists to collect and analyse data
from field sites or to integrate data from multiple sources. For example,
the Environmental Data Commons project provides Docker images for
environmental monitoring tools that can be used to collect and analyse
data from field sites.

Finally, containers can also be used to distribute data manage-
ment and analysis tools, such as databases or data visualization soft-
ware. These help ecologists store, organize and analyse large data
sets. For example, the EcoData Retriever project provides a Docker
image for downloading and cleaning up ecological data from various
sources69. Containers are also central to the packaging and distribution
of ecological modelling software, such as population dynamics mod-
els or ecosystem models used to build and test models of ecological
systems. The Ecological Niche Modeling on Docker project provides
Docker images for ecological modelling in R, including tools for building
and fitting models and visualizing results.

Genomics
In the field of genomics, containers are routinely used to package
and distribute software tools for analysing various types of genomic
data70–72. For example, in the DNA sequencing data analysis, the BioCon-
tainers project73 provides Docker images for tools, including tools for
read alignment and variant calling. Docker images for tools in the gene
expression analysis (such as RNA sequencing (RNA-seq) and microarray

analyses) are provided by the Bioconductor project74. Similarly, Docker
images for tools in population genetics and evolutionary analyses are
provided by the EIGENSOFT project.

For genome annotation, the GFF3 Tools project75 provides Docker
images for tools such as gene prediction software and functional anno-
tation tools, whereas Docker images for tools for structural variation
analysis, such as copy number variation analysis software and trans-
location detection tools, are provided by the Breakdancer project.
A number of projects provide Docker images for tools for functional
genomics, such as gRNA design and validation to aid in CRISPR-related
research76.

Table 2 | Docker, Singularity and Podman feature comparison

Feature Docker Singularity Podman

Container runtime Yes Yes Yes

Container image
management

Yes Yes Yes

Container
orchestration

Yesa No No

Support for multiple
operating systems

Yes Yes Yes

Integration with
scientific workflow
tools

Yesb Yesb Yesb

Support for
reproducible
research

Yesc Yesc Yesc

Support for data
managementd

Yese Yese Yese

Compatibility with
Docker images

Yes Yes Yes

Support for legacy
softwaref

Yesg Yesg No

Support for OS-level
virtualization

No Yes No

Rootless mode No Yes Yes

Build-time
customization

Yes No Yes

Image format Docker Image
Format (DIF)

Singularity
Image Format
(SIF)

OCI Image
Format

Security features User
namespaces,
AppArmor
profiles

Run containers
as unprivileged
users

Seccomp
support

Networking and
storage options

Docker
networking

Custom
networking
options

Host system
networking with
custom options

Ecosystem and
community

Large and mature Limited but
growing

Limited but
growing

OCI, Open Container Initiative. aVia tools such as Docker Swarm and Kubernetes. bVia tools such
as Snakemake, Nextflow, WholeTale, Binder and CodeOcean. cVia tools such as WholeTale,
Binder and CodeOcean. dData management refers to the process of collecting, storing,
organizing, preserving, maintaining and using data in a way that ensures its quality, security,
accessibility and reliability over time. eVia tools such as DataLad and XNAT. fLegacy software
refers to software that is no longer being actively developed or maintained or to software that
was written for an older operating system or hardware architecture. gVia tools such as Shifter.

https://bci2000.org/
https://ecopath.org/
https://qgis.org
https://edc.occ-data.org
https://ecologicaldata.org/node/42
https://github.com/ghuertaramos/ENMOD
https://biocontainers.pro
https://biocontainers.pro
https://bioconductor.org
https://hsph.harvard.edu/alkes-price/software/eigensoft
https://github.com/genome/breakdancer

Nature Reviews Methods Primers | (2023) 3:50 8

0123456789();:

Primer

Containers can also be used to share tools for the RNA-seq analy-
sis71,77,78, such as read alignment tools or expression quantification
software, facilitating the analysis and interpretation of RNA-seq data.
Some examples of tools that can be packaged in containers for RNA-seq
analysis include STAR79,80 and Salmon81. Recently, containerized soft-
ware has been developed to share tools for epigenomics analysis, such
as DNA methylation analysis software or chromatin accessibility tools,
including Bismark and ATAC-seq Pipeline82.

Finally, containerization has a central role in the development of
tools for analysing genetic variation data, such as single-nucleotide vari-
ant calling software or structural variation detection tools83–85. These
include tools for genetic variation analysis such as GATK and SVTyper.

Astronomy
Containers are increasingly being used in the field of astronomy, making
it easier for astronomers to access and use specialized software and data
and enabling reproducibility and collaboration86–88. One application of
containers in astronomy is the packaging and distribution of software
tools for analysing astronomical data. The Astropy project89 provides
a Docker image for the Astropy python library, which is a widely used
toolkit for astronomy and astrophysics and includes tools for handling
and manipulating astronomical data, such as reading and writing FITS
files, performing coordinate transformations and fitting models to data.
By packaging the Astropy library in a container, astronomers can seam-
lessly install and use the library on their own systems, while minimizing
issues with dependencies or conflicts with other software89,90.

Astronomy research often involves the use of specialized software
and data that may be difficult to obtain or install. By creating a Docker
image that includes all the necessary software and data, astronomers
can share their research environment with others, enabling them
to reproduce and verify results of each other. The Sloan Digital Sky
Survey provides Docker images91 to facilitate reuse by astronomers
and astrophysicists, whereas the Marble Station project provides a
Linux environment with spectroscopic and photometric tools that are
commonly used in astronomy.

Finally, containers can be used in astronomy to facilitate collabo-
ration and data sharing92. The SciServer project provides a scalable
collaborative data-driven science platform for astronomers and other
scientists, using a Docker-based architecture87. SciServer enables
astronomers to access and work with data stored on the platform,
regardless of their own computing environment.

Physics
Containers have been used in the field of physics for some time, mainly
to distribute software tools for analysing physics data93,94.The CERN
Container Registry provides container images for various tools and
libraries that are commonly used in particle physics, including software
for analysing particle collision data and simulations. Physics research
often involves the use of specialized software and data that may be
difficult to obtain or install. By creating a container image that includes
all the necessary software and data, physicists can share their research
environment with others, enabling them to reproduce and verify
results of each other. GEANT4 (ref. 95), also developed by CERN, offers
resources for simulating the passage of particles through matter, with
practical uses in high-energy, nuclear and accelerator physics. The LIGO
Open Science Center96 provides a Docker image for the LIGO Data Grid,
a cloud-based platform for storing and accessing data from the LIGO
gravitational wave detectors, so as to allow physicists to work with data
stored on the LIGO Data Grid.

Environmental science
Containers are increasingly relevant to the field of environmental
science; the Planet Research Data Commons for environmental and
earth science research provides container images for various tools
and libraries that are commonly used in environmental science, includ-
ing software for analysing data on air quality, water quality and land
use. These tools are designed to help address important environmental
issues such as adapting to climate change97, saving threatened species98
and reversing ecosystem deterioration99.

A related application is for the reproducibility of research envi-
ronments. For example, the EarthData project provides container
images for various tools and data that are commonly used in environ-
mental science, including software for analysing data from satellites
and remote-sensing instruments, and data sets such as the NASA Earth
Observing System data100. GRASS GIS — a free and open-source GIS
software — can be used for data analysis, visualization and spatial
modelling. The GRASS GIS container image provides a preconfigured
environment for running GRASS GIS, including all necessary dependen-
cies, libraries and configurations. Similarly, GeoServer is a container
that provides a preconfigured environment for running analyses on
geospatial data and enables data processing, analysing and sharing.
Together, these tools facilitate collaboration between environmental
scientists worldwide101.

Reproducibility and data deposition
Providing reproducible content is a fundamental aspect of scientific
research and has been discussed at length elsewhere, either generally23
or in the context of containerization102,103. Here, we focus on best prac-
tices for sharing containers, commenting and documenting and elabo-
rate on how these can help communicate and disseminate research
findings to maximize their value.

Sharing containers
Containers can help researchers share their work with co-workers,
regardless of the underlying hardware or operating system, and help
improve the reproducibility of research results104. By providing a
consistent environment for running experiments, researchers can
ensure that their results are not affected by differences in hardware or
software configurations. This can be particularly important in fields
such as machine learning or data analysis, in which small differences
in environment can lead to significant differences in results105,106. Shar-
ing both the Dockerfile and the Docker image when sharing contain-
ers is considered best practice because it allows others to reproduce
the exact same environment and configuration of the containerized
application. However, simply having a Dockerfile does not guarantee
the same build every time. There are several factors that can affect the
build, such as the version of the base image, the availability of pack-
ages or the version of the software used. A Dockerfile may be created
that specifies the base image and includes instructions to install the
required versions of dependencies, as well as instructions to copy
the source code of the application into the container to configure the
environment variables. If other researchers use different versions of
the dependencies or if the dependencies are not available, the build
can be different. Nonetheless, sharing both the Dockerfile and the
container image is still essential for enabling reproducibility, as it pro-
vides a starting point for other researchers to build upon and modify
for their own purposes.

To ensure that others can reproduce the exact same build, it is best
practice to also share the image of the container in a Docker registry

https://github.com/alexdobin/STAR
https://combine-lab.github.io/salmon
https://www.bioinformatics.babraham.ac.uk/projects/bismark/
https://github.com/ENCODE-DCC/atac-seq-pipeline
https://gatk.broadinstitute.org
https://github.com/hall-lab/svtyper
https://astropy.org
https://github.com/marblestation/docker-astro
https://sciserver.org
https://hub.docker.com/u/cern
https://hub.docker.com/u/cern
https://geant4.web.cern.ch
https://losc.ligo.org
https://losc.ligo.org
https://ardc.edu.au/program/planet-research-data-commons
https://earthdata.nasa.gov
https://grass.osgeo.org
https://geoserver.org

Nature Reviews Methods Primers | (2023) 3:50 9

0123456789();:

Primer

such as Docker Hub or Quay. Sharing the container in this way allows
others to download and run it without having to build it themselves,
which guarantees that they are running the same environment and
configuration as the original application. In addition, for certain
applications, sharing the data set used in the training process with
the container could be both useful and facilitate reproduction of
simulations or experiments. It is worth pointing out that it is possible
to construct Dockerfiles to be reproducible, for example, by freezing
older versions of container images using RStudio Package Manager,
yet even so images that are not pulled by anyone from Docker Hub for
extended periods of time get purged, and Dockerfiles are not guaran-
teed to build indefinitely. Alternatives to specialized registries exist
for sharing containers; for example, researchers can also use a cloud
platform such as Amazon Web Services or Google Cloud Platform to
host and share containers. These platforms provide tools for building,
storing and distributing containers and can be useful for sharing large
or complex containers.

Finally, researchers can implement more advanced workflows
to build and share their work, for example, by generating automated
Docker builds. One common approach to do that is to configure auto-
mated builds in Docker Hub, which will re-build an image whenever
changes are pushed to the source code repository. The advanced
features of Docker Compose — a tool that allows defining and run-
ning multicontainer applications — can help implement automated
builds when dealing with multiple containers. Similarly, Jenkins is a
commonly used open-source automation server that facilitates auto-
mation of diverse tasks such as creating and launching Docker images.
A Jenkins pipeline can be set up that will build an image and push it
to a registry when certain conditions are met, like when changes are
pushed to the source code repository. Alternatively, GitHub Actions
is a Continuous Integration/Continuous Deployment (CI/CD) platform
that allows developers to automate their workflow on GitHub such
as building and testing code, deploying code to different environ-
ments and managing dependencies. GitHub Actions allows creat-
ing custom workflows that are triggered by events such as commits,
pull requests and releases and has been implemented successfully in
research workflows107. Other options include TravisCI, GitLabCI and
CircleCI — all CI/CD tools specifically designed for automating the
software development process and provide integration with various
services, including Docker.

Best practices in commenting and documenting
Containers are self-contained units of software that include all of the
dependencies and resources needed to run an application and, as
such, they can be complex and difficult to understand. For research
development projects, effective commenting and documentation are
essential. Commenting refers to explanations, descriptions and notes
within the source code, which aids in understanding the purpose of the
code, whereas documentation, which is typically external to the code
and presented in the form of a README file or user manual, provides
additional details103. Proper commenting and documentation can help
make containers more readable and maintainable and facilitate the use
and utility of containerized software108. Table 3 provides important best
practices for commenting and documenting in the process of sharing
containers. By following these best practices and using appropriate
tools, researchers can share their containers with others seamlessly and
effectively. In addition to these general best practices, it is also impor-
tant to follow any required field-specific guidelines or conventions
(F1000Research guidelines)109–111.

Communication and dissemination of research findings
Containers can facilitate the communication and dissemination of
findings in a number of ways. First and foremost, they allow researchers
to share their software applications with other researchers, regardless
of the operating system or hardware being used, allowing for greater
collaboration and the potential for faster progress in their respec-
tive fields. Containers also allow for the creation of fully reproduc-
ible research environments, ensuring that findings can be accurately
replicated and verified. In addition, containers make it easier for
researchers to publish their findings in an accessible format by creat-
ing a self-contained package that can be easily deployed and run by
anyone with access to the container.

Containers have emerged as a promising approach for archiving
research software alongside a publication. Many computing-focused
archives, such as the ACM Digital Library, offer services for archiving
research software. However, the adoption of such services has been
low, and there is a need for better archiving practices that can ensure
long-term preservation and reproducibility of research software.
Containerization can offer several advantages for archiving research
software. By encapsulating all dependencies and configurations of

Table 3 | Best practices for commenting and documenting
containers

Best practice Example

Clearly document the
purpose of the container

This container provides a preconfigured
environment for running the my-science-app
application

Include detailed instructions
for how to use the container

To use this container:
1. Pull the image from the Docker registry:
$ docker pull myusername/my-web-app

2. Run the container: docker run -p
8080:80 myusername/my-web-app

3. Access the app at http://localhost:8080

Provide example usage or run
commands

Here is an example of how to run the
container with a custom configuration file:
$ docker run -p 8080:80 -v/path/to/
config:/etc/my-web-app myusername/
my-web-app‘

List any environment
variables that the container
expects to be set

The container expects the following
environment variables to be set:
- DB_USERNAME (username for the database)
- DB_PASSWORD (password for the database)
- DB_HOST (hostname of the database server)

Document any ports exposed
by the container

This container exposes port 80 for HTTP
traffic

List any external
dependencies

This container requires access to a
MongoDB server running on hostname
mongodb.example.com

Document any data or
volume mounts used by the
container

This container expects a volume to
be mounted at /var/www/html for the
application code

Reference any related
projects, links or
documentation

This container is based on the official Node.
js Docker image, see more details at https://
hub.docker.com/_/node/

Add any version information # Current version: 1.0.0

Add any licensing information # Licensed under the CC BY 4.0 licence

https://quay.io
https://aws.amazon.com
https://cloud.google.com
https://jenkins.io
https://github.com/features/actions
https://f1000research.com/for-authors/article-guidelines/software-tool-articles
https://dl.acm.org
https://hub.docker.com/_/node/
https://hub.docker.com/_/node/
https://creativecommons.org/licenses/by/4.0/

Nature Reviews Methods Primers | (2023) 3:50 10

0123456789();:

Primer

the software into a single container image, containers provide a self-
contained and portable environment that can be easily shared and
preserved. Specifically, container images can be archived as part of
the publication or deposited in a container registry for long-term
preservation. Moreover, containers allow for the reproducibility
of research findings by ensuring that the software environment
remains consistent, even as the underlying infrastructure changes
over time.

Researchers can ensure effective archiving with containers by
adopting several recommended practices. This involves using well-
defined and well-maintained container images, with clear documen-
tation on the included software dependencies and configurations.
Additionally, all software dependencies and configurations should
be well documented, including versions of libraries, software and
operating systems. Widely used and supported container formats,
such as Docker, Singularity or Podman, should be chosen on the basis
of target archive or repository requirements. Metadata and docu-
mentation, such as a README file providing instructions for using the

container, research software information and licensing details should
be provided with the container image. Following these best practices,
archiving research software with containers can be a valuable approach
for ensuring long-term preservation and reproducibility of scientific
findings.

Limitations and optimizations
Although containers are powerful and versatile, they also have impor-
tant limitations. In this section, we discuss some of the pros and cons
of containerization and explore key restrictions. We also discuss com-
patibility with HPC environments, which have become increasingly
popular among computational research groups.

Costs of containerization
Despite its numerous advantages, there are also some costs associ-
ated with using containers in scientific research112. One of the main
drawbacks is the learning curve involved in using containerization
tools and technologies. Researchers need to familiarize themselves

Glossary

Clusters
Groups of machines that work together
to run containerized applications.

Compute resources
The resources required by a container
to run, including central processing
units, memory and storage.

Containerization platform
A complete system for building,
deploying and managing containerized
applications, typically including a
container runtime, and additional
tools and services for things such as
container orchestration, networking,
storage and security.

Container runtime
The software responsible for running
and managing containers on a host
machine, involving tasks such as
starting and stopping containers,
allocating resources to them and
providing an isolated environment
for them to run in.

Continuous Integration/
Continuous Deployment
(CI/CD). A software development
practice that involves continuously
integrating code changes into a
shared repository and continuously
deploying changes to a production
environment.

Dependencies
Software components that a
particular application relies on to run
properly, including libraries, tools and
frameworks.

Distributed-control model
A deployment model in which
control is distributed among multiple
independent nodes, rather than being
centralized in a single control node.

Docker engine
The containerization technology that
Docker uses, consisting of the Docker
daemon running on the computer and
the Docker client that communicates
with the daemon to execute
commands.

Dockerfiles
A script that contains instructions for
building a Docker image.

Environment variables
A variable that is passed to a container
at runtime, allowing the container to
configure itself on the basis of the value
of the variable.

High-performance computing
The use of supercomputers and
parallel processing techniques to solve
complex computational problems that
require a large amount of processing
power, memory and storage capacity.

Host operating system
Primary operating system running on
the physical computer or server in
which virtual machines or containers are
created and managed.

Image
A preconfigured package that
contains all the necessary files and
dependencies for running a piece of
software in a container.

Namespaces
Virtualization mechanisms for
containers, which allow multiple
containers to share the same system
resources without interfering with
each other.

Networking
The process of connecting multiple
containers together and to external
networks, allowing communication
between containers and the outside
world.

Orchestration
The process of automating the
deployment, scaling and management
of containerized applications in a
cluster.

Orchestration platform
System for automating the deployment,
scaling and management of
containerized applications.

Port mapping
The process of exposing the network
ports of a container to the host machine,
allowing communication between
the container and the host or other
networked systems.

Production environment
Live, operational system in which
software applications are deployed and
used by end-users.

Runtime environment
Specific set of software and hardware
configurations that are present and
available for an application to run on,
including the operating system, libraries,
system tools and other dependencies.

Scaling
The process of increasing or decreasing
the number of running instances of
a containerized application to meet
changing demand.

Shared-control model
Deployment model in which a single
central entity has control over multiple
resources or nodes.

Volumes
A storage mechanism for containers,
which allows data to persist outside the
file system of the container, including
after a container has been deleted or
replaced.

Nature Reviews Methods Primers | (2023) 3:50 11

0123456789();:

Primer

with containerization concepts, such as images, containers and
registries, as well as how to use tools such as Docker to manage
and deploy containers. This can require a significant amount of
time and resources, especially for researchers who are new to con-
tainerization. To address this challenge, it is often helpful to start
with the basics, that is, focusing on understanding the concepts
and fundamentals of containerization, such as what a container is,
how it works and the benefits of using containers. Getting hands-
on experience creating and running containers using tools such as
Docker in practice scenarios helps users learn to work with contain-
ers. Online communities dedicated to containerization and related
technologies, such as forums and social media groups, can provide
resources, tips and best practices from experienced developers. In
addition, there are a plenty of online tutorials, books and courses
available that teach both the basics and more advanced concepts
of containerization.

Building container images requires a certain level of expertise and
specialized knowledge, which can be challenging and time-consuming
to obtain. In addition, building, testing and deploying container images
can require dedicated staff, infrastructure and resources — these can
include servers, storage and networking, as well as the orchestration
software needed to manage and deploy the containers. These resources
come at a cost, which can increase when scaling and maintaining the
infrastructure.

In addition to the cost of infrastructure and resources, there are
also sustainability costs associated with the use and maintenance of
containers. The energy consumption of containerized workloads can
be substantial, as they require server and networking infrastructure
to support their operation. Serverless computing — a cloud comput-
ing model that allows developers to deploy and run code without
the need to manage infrastructure — has been proposed as a way to
mitigate these costs via dynamic allocation of computing resources
on the basis of current workload demands. However, it is important
to note that the suitability of serverless computing for long-running
computations in scientific research may depend on various factors,
such as the specific requirements of the computation, the avail-
able budget and trade-offs among cost, performance and conveni-
ence. For certain types of computations or workloads, serverless
computing may still be a viable option, especially when considering
factors such as ease of deployment, automatic scaling and reduced
operational overhead.

In most cases, the benefits of using containers in scientific research
outweigh the costs of learning and managing containerization tools
and technologies. Containers are often seen as a middle ground
between the lightweight and easy-to-use nature of package manag-
ers and the comprehensive isolation and reproducibility of virtual
machines. Containers provide a balance between these two extremes,
offering a higher level of isolation and reproducibility compared with
package managers, while being more resource-efficient and port-
able than virtual machines. This is one of the reasons containers have
become widely adopted in various contexts such as continuous inte-
gration, industry and cloud use and increasingly in research, in which
reproducibility, portability and resource efficiency are crucial factors
for success. However, it is important for researchers to carefully con-
sider their needs and resources when deciding whether to use contain-
ers in their research projects. One important aspect to consider is the
current efficiency of the research workflow and how it can be influenced
by containerization. We now turn to specific limitations and concrete
solutions to build more efficient workflows in scientific research.

Limitations of containerization
Containerization may not be suitable for certain types of research
that depend on the kernel level or on hardware. This can be a particu-
lar issue for machine learning workflows that rely on GPU accelera-
tion, as containers may not be able to access the necessary hardware
resources30,32, because they are designed to be hardware-agnostic and
rely on the kernel of the host system to interface with hardware. As a
result, the host operating system kernel version and configuration
can have an impact on the behaviour and performance of containers.
For example, if a container requires a specific kernel feature that is
not available in the host operating system kernel, it may not function
correctly or may require modifications. Similarly, if the host operat-
ing system kernel has specific security settings or restrictions, they
may apply to containers as well. This can be a challenge for machine
learning workflows that require access to specialized hardware such as
GPUs, as containers may not have direct access to these resources. It is
therefore important to consider the compatibility and dependencies
of the host operating system kernel when working with containers to
ensure proper functionality and reproducibility.

There are several solutions that can be implemented to address
these potential limitations. Containerization technologies exist that
can facilitate better access to host resources, such as Podman or Singu-
larity (Table 2). By allowing the containers to run as regular processes
on the host operating system, without requiring a separate daemon
or root privileges, these tools provide a more native experience and
facilitate access to host resources more directly and efficiently. This
can be especially important for low-level access to system resources,
such as kernel-level features or hardware devices. By contrast, Docker
relies on a daemon process to manage container execution, which can
introduce additional layers of abstraction and potential performance
overhead. In addition, Docker containers typically run as the root user
by default, which can pose security risks and limit access to certain
system resources. As a best practice, it is recommended to set the USER
in Docker containers to a non-root user to mitigate potential security
risks and restrict unnecessary access to system resources, following
the principle of least privilege. This can help improve the security
posture of Docker containers and reduce the risk of unauthorized
access or exploits.

If specific access to the kernel or to hardware resources is required,
it is also possible to use virtual machines, which can provide access to
host resources through virtualization (Table 1). The choice between
containerization and virtual machines does not have to be dichoto-
mous; however, hybrid solutions exist, such as running a containerized
application on top of a virtual machine, which allows the container-
ized application to have the portability and isolation benefits of con-
tainerization while also having access to the host resources through
the virtual machine.

It may not always be possible to fully replicate the environment
in which research was conducted, which can be particularly chal-
lenging when using containers to replicate research environments
with complex dependencies or that rely on specific hardware con-
figurations113. In these cases, it may be difficult to fully replicate the
environment using containers, which can limit the reproducibility of
the research. Specific resources can help make the environment more
portable and reproducible; for example, Platform as a Service (PaaS)
is a cloud computing service that allows developers to create, launch
and manage applications without the need to handle the underlying
infrastructure. Examples include Heroku, Google App Engine and
Microsoft Azure. PaaS can provide resources, scaling and dependency

Nature Reviews Methods Primers | (2023) 3:50 12

0123456789();:

Primer

management, which can help make the environment more portable
and reproducible. Similarly, Infrastructure as a Service (IaaS), a cloud
computing service, offers virtualized computing resources, such as
storage, networking and virtual machines. Some examples of IaaS
providers are Amazon Web Services, Microsoft Azure and Google
Cloud Platform. IaaS gives users additional control over the underly-
ing infrastructure, including hardware and operating system, and
can configure it to match the desired environment for their research.
Alternatively, hardware abstraction layer (HAL) is a layer of software
or hardware that abstracts the underlying hardware and operating
system, allowing applications to run in a more isolated and portable
manner. HAL can help isolate the application and its dependencies
from the underlying hardware and operating system, providing a
consistent environment for reproducible research. Containerization
technologies such as Docker can be considered as a form of HAL, as
they abstract the underlying host system and provide a consistent
environment for running applications.

Containers can introduce additional complexity to research
workflows, as researchers may need to manage and maintain multiple
containerized environments. This can be time-consuming and may
require additional training and support for researchers. Container
orchestration tools such as Docker Swarm or Kubernetes can help
manage this complexity by providing an abstraction layer that simpli-
fies the process of deploying and scaling containers. Docker Swarm
and Kubernetes handle both Embarrassingly parallel (EP) and non-EP
workflows. EP workflows refer to workflows that can be parallelized
and run in isolation, in which each task can be executed independently
of the others, making them well suited for container orchestration.
Non-EP workflows, on the contrary, have interdependent tasks that
require coordination and communication between containers, which
can be more challenging to manage. The two orchestration tools may
require different configurations and setups depending on the workflow
requirements.

For deployment, Docker Swarm uses a shared-control model,
whereas Kubernetes uses a distributed-control model. Docker Swarm
is tightly integrated with the Docker ecosystem and is optimized for
use with Docker containers. Kubernetes, on the contrary is more flex-
ible and can work with any container runtime, not just Docker. Both
Docker Swarm and Kubernetes can scale to thousands of nodes, but
Kubernetes has better support for autoscaling and can scale appli-
cations more quickly. Kubernetes has a wider range of features and
capabilities, including support for rolling updates, resource quotas
and pod security policies. Docker Swarm has fewer features but is
generally easier to use and set up. Overall, Kubernetes is generally
considered to be a more powerful and feature-rich platform, but it
can be more complex to use, whereas Docker Swarm is a good choice
for users who want a simpler, more streamlined solution for container
orchestration.

Researchers are starting to incorporate containers into larger
workflow management systems, which provide a framework for orches-
trating and executing complex scientific workflows. Workflow manage-
ment systems such as Nextflow, CWL and Snakemake, among others,
have gained traction in the scientific community owing to their support
for containerization114. Automation tools such as Ansible, Puppet and
Chef can be used to automate the process of building, deploying
and managing containers. Researchers can also rely on container man-
agement platforms such as Google Kubernetes Engine or Amazon
Elastic Container Service to access a user-friendly interface for man-
aging containers. For optimal results, it is important to consider the

specific requirements of the research and the size and structure of the
organization when selecting and implementing a solution.

Adapting containers to HPC environments
Challenges can also arise when attempting to deploy containers
over HPC environments115,116. These environments typically consist
of clusters of computers with powerful processors, large amounts of
memory and high-speed interconnects that allow the computers to
work together in a coordinated way. They are often used to solve prob-
lems that require large amounts of data processing or simulations that
would be too time-consuming or impossible to perform on a single
computer. Yet, the complexity HPC often produces also adds hurdles
to containerization. For example, containers can introduce overhead
when compared with traditional virtualization technologies, as they
run isolated processes and require additional system resources to
manage the containers. Although containers are generally considered
lightweight compared with virtual machines, this can result in higher
overhead when running performance-critical workloads on HPC sys-
tems. However, the lightweight nature of containers can also improve
resource utilization, as multiple containers can be run on the same host
without significant performance degradation. This trade-off between
overhead and resource utilization should be carefully considered when
deciding whether to use containers for HPC workloads. Furthermore,
the degree of isolation containers provide between different applica-
tions and their dependencies may not be sufficient for all HPC work-
loads that require tight control over system resources such as CPU,
memory and input/output (I/O).

HPC environments can also lead to limitations in terms of com-
patibility, as these systems typically have complex and specialized
infrastructure — such as parallel file systems — that may not be easily
integrated with container technologies. This architecture can lead to dif-
ficulties when trying to use containers in HPC environments. Scalability
can also be an issue, as HPC environments may in some instances not
be well suited for running large numbers of simultaneously executing
containers on a shared infrastructure. Finally, in university and research
settings, HPC environments may require additional security measures
to protect against unauthorized access, especially when dealing with
sensitive patient-level data or patent information. In this context, con-
tainers can pose security risks, as they may not provide the same level of
isolation and control as traditional virtualization technologies.

Despite these challenges, the use of containerization in HPC
environments provides very attractive features and opportunities for
researchers. One of the main advantages of using containers in HPC
environments is their portability117, which allows HPC workloads to be
deployed on a wide range of hardware and operating systems, without
the need to worry about compatibility issues or manual configuration.
This can greatly simplify the process of deploying and managing HPC
applications, especially in large-scale environments in which there may
be many different hardware configurations and operating systems
in use. Containers also improve resource utilization in HPC environ-
ments118; because they are lightweight and only contain the resources
that are necessary for the application to run, they can be more efficient
at utilizing hardware resources such as CPU, memory and storage. With
containers, HPC applications can be more efficiently scheduled and
run on available resources, potentially improving overall performance
and minimizing resource contention. Containers can also be used to
improve the security and isolation of HPC workloads, as dependen-
cies can be isolated from the rest of the system, reducing the risk of
interference or conflicts with other applications. Finally, although HPC

https://ansible.com
https://puppet.com
https://chef.io

Nature Reviews Methods Primers | (2023) 3:50 13

0123456789();:

Primer

resources have traditionally been accessed using specialized software
and protocols, the use of containers can allow researchers to access HPC
resources in a more cloud-native way119, that is, in a way that is similar to
how one would access cloud computing resources. This increases flex-
ibility and scalability in a user-friendly way, in contrast to strict reliance
on specialized software and protocols. For example, by using contain-
erized workflows and tools such as Singularity, researchers can access
HPC resources using familiar container orchestration tools and APIs,
such as those provided by Kubernetes120, making it easier for research-
ers to access and manage HPC resources, allowing a seamless integra-
tion with other tools and services. Additionally, the use of containerized
workflows can enable researchers to scale their workloads more easily
across HPC resources, as containers can be seamlessly transferred and
executed on different HPC systems. This can be particularly useful for
researchers who need to run large-scale simulations or data analyses
that require significant computing resources.

There are several tools and platforms available that can be used
to support the use of containers in HPC environments34. For example,
the Open Container Initiative is a standard for building and running
containerized applications and is supported by a range of container
engines and orchestration tools such as Docker, Kubernetes and Mesos.
These tools can be used to manage and deploy containerized HPC
applications at scale, allowing organizations to take advantage of the
benefits of containerization in their HPC environments.

Outlook
Containers offer many benefits for scientific research, including the
ability to package and distribute software and data in a consistent and
portable manner, enabling reproducibility and collaboration and facili-
tating the use of cloud computing121. As the use of containers becomes
more widespread, it is likely that they will become an increasingly
important tool in scientific computing. Containers can make it easier
for scientists to access and use specialized software and data and can
facilitate the sharing and reproducibility of research environments122.
This may lead to the development of new container-based tools and
platforms specifically designed for scientific computing.

Containers will also become more and more useful in data-
intensive research, in which large amounts of data are generated and
analysed, and uptake in this space is expected to increase123–125. By using
containers to package and distribute data analysis tools, scientists can
easily share and reproduce their results and can also take advantage of
the scalability and flexibility of cloud computing126. As scientists rely
more and more on automated and reproducible research workflows,
it is also likely that they will increasingly turn to containers to package
and distribute these workflows. We have discussed a few of the available
platforms and repositories in this article, but options will undoubtedly
grow quickly in the future, as containers continue to have an important
role in scientific research.

Container orchestration tools such as Kubernetes and Docker
Swarm will further enable scientists to deploy and manage complex
research workflows across multiple machines, improving the efficiency
and scalability of their research127. These platforms allow researchers to
deploy and manage their scientific applications and tools and enable the
creation of scalable and fault-tolerant environments for running experi-
ments and simulations, thus allowing researchers to prioritize and allo-
cate resources to their most important tasks. Tools such as containerd
and Docker Composed are helping to change the landscape of pos-
sibilities in containerization, providing convenience and enhancing
capabilities for users. Containerd is an open-source container runtime

that is designed to be lightweight and modular, which is becoming
increasingly popular for managing containers in cloud environments,
particularly in conjunction with Kubernetes. Docker Compose is a tool
that allows developers to define and run multicontainer applications
using a simple YAML configuration file, simplifying the definition and
management of complex containerized environments.

Other recent developments such as Dev Containers are likely to gain
prominence in the research space. Dev Containers allow specifying the
container environment to use in conjunction with GitHub Codespaces,
a feature that facilitates creating new development enviro nments in the
cloud — directly within GitHub — with the specific versions of languages,
frameworks and tools that are required for a project. Dev Containers
are defined using a configuration file called a ‘devcontainer.json’ file,
which specifies the container image that should be used, along with
any additional configuration options such as environ ment variables,
volumes and ports. These files automatically launch the container
environment in the codespace, allowing researchers to switch between
different container environments.

Finally, recent developments in cloud are changing the way con-
tainers are being used and shared. Specifically, the trend towards
building cloud-native applications, which are designed to be scalable
and resilient, has led to the adoption of containerization to package and
deploy these applications. Cloud-native applications often use micro-
services architecture, which relies on containers to manage individual
components and services. Relatedly, serverless computing is often
used in conjunction with containerization to package and deploy code
in a more efficient and scalable manner. Together, these features can in
turn allow researchers to effortlessly scale their computations across
multiple machines, potentially improving the efficiency and speed of
their research.

The implications of containerization are vast and far-ranging and
could impact the whole ecosystem of scientific research. Containers
have the potential to heavily influence scientific publishing, via tools
such as WholeTale128, Binder and CodeOcean, which are designed to
facilitate the integration between published research and container-
ized research129. These tools enable researchers to create and share
reproducible research environments using containers and provide
platforms for publishing and sharing research that is based on contain-
ers, with additional features and functionality specifically designed for
reproducible research above and beyond those available with Docker.
It is also possible that funding agencies will recognize the value of
containerization to ensure quality and reproducibility of scientific
research130,131 and thus require containerization for funded projects in
the future. This may necessitate the development of new infrastructure,
training and support for researchers — factors that funders will need to
consider to successfully implement a requirement for containerization
in scientific research.

In our view, the use of containerization in scientific research is a
natural evolution that is likely to become standard practice132. Con-
tainerization is booming, with constant innovation and development,
and has become the norm in fields such as software development and
engineering133. There is no reason scientists should not leverage this
tool to improve scientific practices, as well as the quality and impact
of their research. Many scientists already share data and materials
with their publications12,134–136 — containerization is the next natural
step in this direction102,137, with the potential to revolutionize scientific
research and discovery.

Published online: xx xx xxxx

https://containerd.io/
https://mybinder.org/
http://codeocean.com

Nature Reviews Methods Primers | (2023) 3:50 14

0123456789();:

Primer

References
1. Hsiehchen, D., Espinoza, M. & Hsieh, A. Multinational teams and diseconomies of scale

in collaborative research. Sci. Adv. 1, e1500211 (2015).
2. International Human Genome Sequencing Consortium. Initial sequencing and analysis

of the human genome. Nature 409, 860–921 (2001).
3. Kandoth, C. et al. Mutational landscape and significance across 12 major cancer types.

Nature 502, 333–339 (2013).
4. DeGrace, M. M. et al. Defining the risk of SARS-CoV-2 variants on immune protection.

Nature 605, 640–652 (2022).
5. Berrang-Ford, L. et al. A systematic global stocktake of evidence on human adaptation

to climate change. Nat. Clim. Change 11, 989–1000 (2021).
6. Donoho, D. L. An invitation to reproducible computational research. Biostatistics 11,

385–388 (2010).
7. Prabhu, P. et al. in State of the Practice Reports 1–12 (Association for Computing

Machinery, 2011).
8. Humphreys, P. in Science in the Context of Application (eds Carrier, M. & Nordmann, A.)

131–142 (Springer Netherlands, 2011).
9. Cioffi-Revilla, C. in Introduction to Computational Social Science: Principles and

Applications (ed. Cioffi-Revilla, C.) 35–102 (Springer International Publishing, 2017).
10. Levenstein, M. C. & Lyle, J. A. Data: sharing is caring. Adv. Methods Pract. Psychol. Sci. 1,

95–103 (2018).
11. Kidwell, M. C. et al. Badges to acknowledge open practices: a simple, low-cost, effective

method for increasing transparency. PLoS Biol. 14, e1002456 (2016).
12. Auer, S. et al. Science forum: a community-led initiative for training in reproducible

research. eLife https://doi.org/10.7554/eLife.64719 (2021).
13. Epskamp, S. Reproducibility and replicability in a fast-paced methodological world.

Adv. Methods Pract. Psychol. Sci. 2, 145–155 (2019).
14. Pittard, W. S. & Li, S. in Computational Methods and Data Analysis for Metabolomics

(ed. Li, S.) 265–311 (Springer US, 2020).
15. Baker, M. 1,500 Scientists lift the lid on reproducibility. Nature https://doi.org/10.1038/

533452a (2016).
16. Baker, M. Reproducibility: seek out stronger science. Nature 537, 703–704 (2016).
17. Button, K. S., Chambers, C. D., Lawrence, N. & Munafò, M. R. Grassroots training for

reproducible science: a consortium-based approach to the empirical dissertation.
Psychol. Learn. Teach. 19, 77–90 (2020).

18. Wilson, G. et al. Good enough practices in scientific computing. PLoS Comput. Biol. 13,
e1005510 (2017).
This article outlines a set of good computing practices that every researcher can
adopt, regardless of their current level of computational skill. These practices
encompass data management, programming, collaborating with colleagues,
organizing projects, tracking work and writing manuscripts.

19. Vicente-Saez, R. & Martinez-Fuentes, C. Open science now: a systematic literature review
for an integrated definition. J. Bus. Res. 88, 428–436 (2018).

20. McKiernan, E. C. et al. How open science helps researchers succeed. eLife 5, e16800
(2016).

21. Woelfle, M., Olliaro, P. & Todd, M. H. Open science is a research accelerator. Nat. Chem.
3, 745–748 (2011).

22. Evans, J. A. & Reimer, J. Open access and global participation in science. Science 323,
1025 (2009).

23. Sandve, G. K., Nekrutenko, A., Taylor, J. & Hovig, E. Ten simple rules for reproducible
computational research. PLoS Comput. Biol. 9, e1003285 (2013).

24. Fan, G. et al. in Proceedings of the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis 463–474 (Association for Computing Machinery, 2020).

25. Liu, K. & Aida, K. in 2016 International Conference on Cloud Computing Research and
Innovations (ICCCRI) 56–63 (IEEE, 2016).

26. Hale, J. S., Li, L., Richardson, C. N. & Wells, G. N. Containers for portable, productive,
and performant scientific computing. Comput. Sci. Eng. 19, 40–50 (2017).

27. Boettiger, C., Center for Stock Assessment Research. An introduction to Docker
for reproducible research. Oper. Syst. Rev. https://doi.org/10.1145/2723872.2723882
(2015).
This article explores how Docker can help address challenges in computational
reproducibility in scientific research, examining how Docker combines several areas
from systems research to facilitate reproducibility, portability and extensibility of
computational work.

28. Kiar, G. et al. Science in the cloud (SIC): a use case in MRI connectomics. Gigascience 6,
gix013 (2017).

29. Merkel, D. Docker: lightweight Linux containers for consistent development and
deployment. Seltzer https://www.seltzer.com/margo/teaching/CS508.19/papers/
merkel14.pdf (2013).
This article describes how Docker can package applications and their dependencies
into lightweight containers that move easily between different distros, start up quickly
and are isolated from each other.

30. Kurtzer, G. M., Sochat, V. & Bauer, M. W. Singularity: scientific containers for mobility
of compute. PLoS ONE 12, e0177459 (2017).

31. Sochat, V. V., Prybol, C. J. & Kurtzer, G. M. Enhancing reproducibility in scientific
computing: metrics and registry for Singularity containers. PLoS ONE 12, e0188511 (2017).
This article presents Singularity Hub, a framework to build and deploy Singularity
containers for mobility of compute. The article also introduces Singularity Python
software with novel metrics for assessing reproducibility of such containers.

32. Walsh, D. & Podman team. Podman: A Tool for Managing OCI Containers and Pods.
Github https://github.com/containers/podman (2023).

33. Potdar, A. M., Narayan, D. G., Kengond, S. & Mulla, M. M. Performance evaluation of
Docker container and virtual machine. Procedia Comput. Sci. 171, 1419–1428 (2020).

34. Gerhardt, L. et al. Shifter: containers for HPC. J. Phys. Conf. Ser. 898, 082021 (2017).
35. Ram, K. Git can facilitate greater reproducibility and increased transparency in science.

Source Code Biol. Med. 8, 7 (2013).
36. Vuorre, M. & Curley, J. P. Curating research assets: a tutorial on the git version control

system. Adv. Methods Pract. Psychol. Sci. 1, 219–236 (2018).
37. Clyburne-Sherin, A., Fei, X. & Green, S. A. Computational reproducibility via containers

in psychology. Meta Psychol. 3, 892 (2019).
38. Boettiger, C. & Eddelbuettel, D. An introduction to rocker: Docker containers for R. R J. 9,

527 (2017).
39. Nüst, D. et al. The Rockerverse: packages and applications for containerization with R.

Preprint at https://doi.org/10.48550/arXiv.2001.10641 (2020).
40. Nüst, D. & Hinz, M. containerit: generating Dockerfiles for reproducible research with R.

J. Open Source Softw. 4, 1603 (2019).
41. Xiao, N. Liftr: Containerize R markdown documents for continuous reproducibility

(CRAN, 2019).
42. Peikert, A. & Brandmaier, A. M. A reproducible data analysis workflow with R Markdown,

Git, Make, and Docker. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/8xzqy (2019).
43. Younge, A. J., Pedretti, K., Grant, R. E. & Brightwell, R. in 2017 IEEE International

Conference on Cloud Computing Technology and Science (CloudCom) 74–81 (2017).
44. Freire, J., Bonnet, P. & Shasha, D. in Proceedings of the 2012 ACM SIGMOD International

Conference on Management of Data 593–596 (Association for Computing Machinery,
2012).

45. Papin, J. A., Mac Gabhann, F., Sauro, H. M., Nickerson, D. & Rampadarath, A. Improving
reproducibility in computational biology research. PLoS Comput. Biol. 16, e1007881
(2020).

46. Sochat, V. V. et al. The experiment factory: standardizing behavioral experiments.
Front. Psychol. 7, 610 (2016).

47. Khan, F. Z. et al. Sharing interoperable workflow provenance: a review of best practices
and their practical application in CWLProv. Gigascience 8, giz095 (2019).

48. Kane, S. P. & Matthias, K. Docker: Up & Running: Shipping Reliable Containers in
Production (‘O’Reilly Media, Inc., 2018).

49. Khan, A. Key characteristics of a container orchestration platform to enable a modern
application. IEEE Cloud Comput. 4, 42–48 (2017).

50. Singh, S. & Singh, N. in 2016 2nd International Conference on Applied and Theoretical
Computing and Communication Technology (iCATccT) 804–807 (2016).

51. Singh, V. & Peddoju, S. K. in 2017 International Conference on Computing,
Communication and Automation (ICCCA) 847–852 (IEEE, 2017).

52. Kang, H., Le, M. & Tao, S. in 2016 IEEE International Conference on Cloud Engineering
(IC2E) 202–211 (IEEE, 2016).

53. Sultan, S., Ahmad, I. & Dimitriou, T. Container security: issues, challenges, and the road
ahead. IEEE Access. 7, 52976–52996 (2019).

54. Ruiz, C., Jeanvoine, E. & Nussbaum, L. in Euro-Par 2015: Parallel Processing Workshops
813–824 (Springer International Publishing, 2015).

55. Nadgowda, S., Suneja, S. & Kanso, A. in 2017 IEEE International Conference on Cloud
Engineering (IC2E) 266–272 (IEEE, 2017).

56. Srirama, S. N., Adhikari, M. & Paul, S. Application deployment using containers with
auto-scaling for microservices in cloud environment. J. Netw. Computer Appl. 160,
102629 (2020).

57. Cito, J. et al. in 2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR) 323–333 (IEEE, 2017).

58. Poldrack, R. A. & Gorgolewski, K. J. Making Big Data open: data sharing in neuroimaging.
Nat. Neurosci. 17, 1510–1517 (2014).

59. Smith, S. M. & Nichols, T. E. Statistical challenges in ‘Big Data’ human neuroimaging.
Neuron 97, 263–268 (2018).

60. Tourbier, S. et al. Connectome Mapper 3: a flexible and open-source pipeline software
for multiscale multimodal human connectome mapping. J. Open Source Softw. 7, 4248
(2022).

61. Nichols, T. E. et al. Best practices in data analysis and sharing in neuroimaging using MRI.
Nat. Neurosci. 20, 299–303 (2017).

62. Halchenko, Y. O. & Hanke, M. Open is not enough. Let’s take the next step: an integrated,
community-driven computing platform for neuroscience. Front. Neuroinform. 6, 22 (2012).

63. Schalk, G. & Mellinger, J. A Practical Guide to Brain–Computer Interfacing with BCI2000:
General-Purpose Software for Brain–Computer Interface Research, Data Acquisition,
Stimulus Presentation, and Brain Monitoring (Springer Science & Business Media, 2010).

64. Kaur, B., Dugré, M., Hanna, A. & Glatard, T. An analysis of security vulnerabilities in
container images for scientific data analysis. Gigascience 10, giab025 (2021).

65. Huang, Y. et al. Realized ecological forecast through an interactive Ecological Platform
for Assimilating Data (EcoPAD, v1.0) into models. Geosci. Model. Dev. 12, 1119–1137 (2019).

66. White, E. P. et al. Developing an automated iterative near‐term forecasting system for an
ecological study. Methods Ecol. Evol. 10, 332–344 (2019).

67. Powers, S. M. & Hampton, S. E. Open science, reproducibility, and transparency in
ecology. Ecol. Appl. 29, e01822 (2019).

68. Ali, A. S., Coté, C., Heidarinejad, M. & Stephens, B. Elemental: an open-source wireless
hardware and software platform for building energy and indoor environmental
monitoring and control. Sensors 19, 4017 (2019).

https://doi.org/10.7554/eLife.64719
https://doi.org/10.1038/533452a
https://doi.org/10.1038/533452a
https://doi.org/10.1145/2723872.2723882
https://www.seltzer.com/margo/teaching/CS508.19/papers/merkel14.pdf
https://www.seltzer.com/margo/teaching/CS508.19/papers/merkel14.pdf
https://github.com/containers/podman
https://doi.org/10.48550/arXiv.2001.10641
https://doi.org/10.31234/osf.io/8xzqy

Nature Reviews Methods Primers | (2023) 3:50 15

0123456789();:

Primer

69. Morris, B. D. & White, E. P. The EcoData retriever: improving access to existing ecological
data. PLoS ONE 8, e65848 (2013).

70. Schulz, W. L., Durant, T. J. S., Siddon, A. J. & Torres, R. Use of application containers
and workflows for genomic data analysis. J. Pathol. Inform. 7, 53 (2016).

71. Di Tommaso, P. et al. The impact of Docker containers on the performance of genomic
pipelines. PeerJ 3, e1273 (2015).

72. O’Connor, B. D. et al. The Dockstore: enabling modular, community-focused sharing
of Docker-based genomics tools and workflows. F1000Res. 6, 52 (2017).

73. Bai, J. et al. BioContainers registry: searching bioinformatics and proteomics tools,
packages, and containers. J. Proteome Res. 20, 2056–2061 (2021).

74. Gentleman, R. C. et al. Bioconductor: open software development for computational
biology and bioinformatics. Genome Biol. 5, R80 (2004).

75. Zhu, T., Liang, C., Meng, Z., Guo, S. & Zhang, R. GFF3sort: a novel tool to sort GFF3 files
for tabix indexing. BMC Bioinformatics 18, 482 (2017).

76. Müller Paul, H., Istanto, D. D., Heldenbrand, J. & Hudson, M. E. CROPSR: an automated
platform for complex genome-wide CRISPR gRNA design and validation. BMC
Bioinformatics 23, 74 (2022).

77. Torre, D., Lachmann, A. & Ma’ayan, A. BioJupies: automated generation of interactive
notebooks for RNA-Seq data analysis in the cloud. Cell Syst. 7, 556–561.e3 (2018).

78. Mahi, N. A., Najafabadi, M. F., Pilarczyk, M., Kouril, M. & Medvedovic, M. GREIN: an
interactive web platform for re-analyzing GEO RNA-seq data. Sci. Rep. 9, 7580 (2019).

79. Dobin, A. & Gingeras, T. R. Mapping RNA-seq reads with STAR. Curr. Protoc. Bioinform. 51,
11.14.1–11.14.19 (2015).

80. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21
(2013).

81. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast
and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419
(2017).

82. Yan, F., Powell, D. R., Curtis, D. J. & Wong, N. C. From reads to insight: a Hitchhiker’s guide
to ATAC-seq data analysis. Genome Biol. 21, 22 (2020).

83. Garcia, M. et al. Sarek: a portable workflow for whole-genome sequencing analysis
of germline and somatic variants. Preprint at bioRxiv https://doi.org/10.1101/316976
(2018).

84. Sirén, J. et al. Pangenomics enables genotyping of known structural variants in 5202
diverse genomes. Science 374, abg8871 (2021).

85. Zarate, S. et al. Parliament2: accurate structural variant calling at scale. Gigascience 9,
giaa145 (2020).

86. Morris, D., Voutsinas, S., Hambly, N. C. & Mann, R. G. Use of Docker for deployment
and testing of astronomy software. Astron. Comput. 20, 105–119 (2017).

87. Taghizadeh-Popp, M. et al. SciServer: a science platform for astronomy and beyond.
Astron. Comput. 33, 100412 (2020).

88. Herwig, F. et al. Cyberhubs: virtual research environments for astronomy. Astrophys. J.
Suppl. Ser. 236, 2 (2018).

89. The Astropy Collaboration. et al. The Astropy Project: building an open-science project
and status of the v2.0 Core Package*. Astron. J. 156, 123 (2018).

90. Robitaille, T. P. et al. Astropy: a community Python package for astronomy.
Astron. Astrophys. Suppl. Ser. 558, A33 (2013).

91. Abolfathi, B. et al. The fourteenth data release of the sloan digital sky survey: first
spectroscopic data from the extended Baryon Oscillation Spectroscopic Survey and
from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment.
Astrophys. J. Suppl. Ser. 235, 42 (2018).

92. Nigro, C. et al. Towards open and reproducible multi-instrument analysis in gamma-ray
astronomy. Astron. Astrophys. Suppl. Ser. 625, A10 (2019).

93. Liu, Q., Zheng, W., Zhang, M., Wang, Y. & Yu, K. Docker-based automatic deployment
for nuclear fusion experimental data archive cluster. IEEE Trans. Plasma Sci. IEEE Nucl.
Plasma Sci. Soc. 46, 1281–1284 (2018).

94. Meng, H. et al. An invariant framework for conducting reproducible computational
science. J. Comput. Sci. 9, 137–142 (2015).

95. Agostinelli, S. et al. Geant4 — a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A
506, 250–303 (2003).

96. Vallisneri, M., Kanner, J., Williams, R., Weinstein, A. & Stephens, B. The LIGO open science
center. J. Phys. Conf. Ser. 610, 012021 (2015).

97. Scott, D. & Becken, S. Adapting to climate change and climate policy: progress,
problems and potentials. J. Sustain. Tour. 18, 283–295 (2010).

98. Ebenhard, T. Conservation breeding as a tool for saving animal species from extinction.
Trends Ecol. Evol. 10, 438–443 (1995).

99. Warlenius, R., Pierce, G. & Ramasar, V. Reversing the arrow of arrears: the concept of
‘ecological debt’ and its value for environmental justice. Glob. Environ. Change 30,
21–30 (2015).

100. Acker, J. G. & Leptoukh, G. Online analysis enhances use of NASA Earth science data.
Eos Trans. Am. Geophys. Union 88, 14–17 (2007).

101. Yang, C. et al. Big earth data analytics: a survey. Big Earth Data 3, 83–107 (2019).
102. Wiebels, K. & Moreau, D. Leveraging containers for reproducible psychological research.

Adv. Methods Pract. Psychol. Sci. 4, 25152459211017853 (2021).
This article describes the logic behind containers and the practical problems they
can solve. The tutorial section walks the reader through the implementation of
containerization within a research workflow, with examples using Docker and R. The
article provides a worked example that includes all steps required to set up a container
for a research project, which can be easily adapted and extended.

103. Nüst, D. et al. Ten simple rules for writing Dockerfiles for reproducible data science.
PLoS Comput. Biol. 16, e1008316 (2020).
This article presents a set of rules to help researchers write understandable
Dockerfiles for typical data science workflows. By following these rules, researchers
can create containers suitable for sharing with fellow scientists, for including in
scholarly communication and for effective and sustainable personal workflows.

104. Elmenreich, W., Moll, P., Theuermann, S. & Lux, M. Making simulation results
reproducible — survey, guidelines, and examples based on Gradle and Docker. PeerJ
Comput. Sci. 5, e240 (2019).

105. Van Moffaert, K. & Nowé, A. Multi-objective reinforcement learning using sets of pareto
dominating policies. J. Mach. Learn. Res. 15, 3663–3692 (2014).

106. Gama, J., Sebastião, R. & Rodrigues, P. P. On evaluating stream learning algorithms.
Mach. Learn. 90, 317–346 (2013).

107. Kim, A. Y. et al. Implementing GitHub Actions continuous integration to reduce error
rates in ecological data collection. Methods Ecol. Evol. 13, 2572–2585 (2022).

108. Wilson, G. et al. Best practices for scientific computing. PLoS Biol. 12, e1001745 (2014).
109. Eglen, S. J. et al. Toward standard practices for sharing computer code and programs

in neuroscience. Nat. Neurosci. 20, 770–773 (2017).
110. No authors listed. Rebooting review. Nat. Biotechnol. 33, 319 (2015).
111. Kenall, A. et al. Better reporting for better research: a checklist for reproducibility.

BMC Neurosci. 16, 44 (2015).
112. Poldrack, R. A. The costs of reproducibility. Neuron 101, 11–14 (2019).
113. Nagarajan, P., Warnell, G. & Stone, P. Deterministic implementations for reproducibility in

deep reinforcement learning. Preprint at arXiv https://doi.org/10.48550/arXiv.1809.05676
(2018).

114. Piccolo, S. R., Ence, Z. E., Anderson, E. C., Chang, J. T. & Bild, A. H. Simplifying the
development of portable, scalable, and reproducible workflows. eLife 10, e71069 (2021).

115. Higgins, J., Holmes, V. & Venters, C. in High Performance Computing 506–513 (Springer
International Publishing, 2015).

116. de Bayser, M. & Cerqueira, R. in 2017 IEEE International Conference on Cloud Engineering
(IC2E) 259–265 (IEEE, 2017).

117. Netto, M. A. S., Calheiros, R. N., Rodrigues, E. R., Cunha, R. L. F. & Buyya, R. HPC cloud
for scientific and business applications: taxonomy, vision, and research challenges.
ACM Comput. Surv. 51, 1–29 (2018).

118. Azab, A. in 2017 IEEE International Conference on Cloud Engineering (IC2E) 279–285
(IEEE, 2017).

119. Qasha, R., Cała, J. & Watson, P. in 2016 IEEE 12th International Conference on e-Science
(e-Science) 81–90 (IEEE, 2016).

120. Saha, P., Beltre, A., Uminski, P. & Govindaraju, M. in Proceedings of the Practice and
Experience on Advanced Research Computing 1–8 (Association for Computing
Machinery, 2018).

121. Abdelbaky, M., Diaz-Montes, J., Parashar, M., Unuvar, M. & Steinder, M. in 2015 IEEE/ACM
8th International Conference on Utility and Cloud Computing (UCC) 368–371 (IEEE, 2015).

122. Hung, L.-H., Kristiyanto, D., Lee, S. B. & Yeung, K. Y. GUIdock: using Docker containers
with a common graphics user interface to address the reproducibility of research. PLoS
ONE 11, e0152686 (2016).

123. Salza, P. & Ferrucci, F. Speed up genetic algorithms in the cloud using software
containers. Future Gener. Comput. Syst. 92, 276–289 (2019).

124. Pahl, C., Brogi, A., Soldani, J. & Jamshidi, P. Cloud container technologies: a state-of-the-art
review. IEEE Trans. Cloud Comput. 7, 677–692 (2019).

125. Dessalk, Y. D., Nikolov, N., Matskin, M., Soylu, A. & Roman, D. in Proceedings of the 12th
International Conference on Management of Digital EcoSystems 76–83 (Association for
Computing Machinery, 2020).

126. Martín-Santana, S., Pérez-González, C. J., Colebrook, M., Roda-García, J. L. & González-
Yanes, P. in Data Science and Digital Business (eds García Márquez, F. P. & Lev, B.) 121–146
(Springer International Publishing, 2019).

127. Jansen, C., Witt, M. & Krefting, D. in Computational Science and Its Applications — ICCSA
2016 303–318 (Springer International Publishing, 2016).

128. Brinckman, A. et al. Computing environments for reproducibility: capturing the ‘Whole
Tale’. Future Gener. Comput. Syst. 94, 854–867 (2019).

129. Perkel, J. M. Make code accessible with these cloud services. Nature 575, 247–248 (2019).
130. Poldrack, R. A., Gorgolewski, K. J. & Varoquaux, G. Computational and informatic

advances for reproducible data analysis in neuroimaging. Annu. Rev. Biomed. Data Sci. 2,
119–138 (2019).

131. Vaillancourt, P. Z., Coulter, J. E., Knepper, R. & Barker, B. in 2020 IEEE High Performance
Extreme Computing Conference (HPEC) 1–8 (IEEE, 2020).

132. Adufu, T., Choi, J. & Kim, Y. in 17th Asia-Pacific Network Operations and Management
Symposium (APNOMS) 507–510 (IEEE, 2015).

133. Cito, J., Ferme, V. & Gall, H. C. in Web Engineering 609–612 (Springer International
Publishing, 2016).

134. Tedersoo, L. et al. Data sharing practices and data availability upon request differ across
scientific disciplines. Sci. Data 8, 192 (2021).

135. Tenopir, C. et al. Data sharing by scientists: practices and perceptions. PLoS ONE 6,
e21101 (2011).

136. Gomes, D. G. E. et al. Why don’t we share data and code? Perceived barriers and benefits
to public archiving practices. Proc. Biol. Sci. 289, 20221113 (2022).

137. Weston, S. J., Ritchie, S. J., Rohrer, J. M. & Przybylski, A. K. Recommendations for
increasing the transparency of analysis of preexisting data sets. Adv. Methods Pract.
Psychol. Sci. 2, 214–227 (2019).

https://doi.org/10.1101/316976
https://doi.org/10.48550/arXiv.1809.05676

Nature Reviews Methods Primers | (2023) 3:50 16

0123456789();:

Primer

Acknowledgements
D.M. and K.W. are supported by a Marsden grant from the Royal Society of New Zealand and
a University of Auckland Early Career Research Excellence Award awarded to D.M.

Author contributions
Introduction (D.M., K.W. and C.B.); Experimentation (D.M., K.W. and C.B.); Results (D.M., K.W.
and C.B.); Applications (D.M., K.W. and C.B.); Reproducibility and data deposition (D.M.,
K.W. and C.B.); Limitations and optimizations (D.M., K.W. and C.B.); Outlook (D.M., K.W. and C.B.).

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at
https://doi.org/10.1038/s43586-023-00236-9.

Peer review information Nature Reviews Methods Primers thanks Beth Ciimini, Stephen
Piccolo and the other, anonymous, reviewer(s) for their contribution to the peer review
of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this
article under a publishing agreement with the author(s) or other rightsholder(s); author self-
archiving of the accepted manuscript version of this article is solely governed by the terms
of such publishing agreement and applicable law.

Related links
ACM Digital Library: https://dl.acm.org
Amazon Web Services: https://aws.amazon.com
Ansible: https://ansible.com
Astropy: https://astropy.org
ATAC-seq Pipeline: https://github.com/ENCODE-DCC/atac-seq-pipeline
BCI2000 project: https://bci2000.org/
Binder: https://mybinder.org/
Bioconductor: https://bioconductor.org
BioContainers: https://biocontainers.pro
Bismark: https://www.bioinformatics.babraham.ac.uk/projects/bismark/
Breakdancer: https://github.com/genome/breakdancer
CERN Container Registry: https://hub.docker.com/u/cern
Chef: https://chef.io
CodeOcean: http://codeocean.com
Containerd: https://containerd.io/
Docker Hub: https://hub.docker.com

EarthData: https://earthdata.nasa.gov
EcoData Retriever: https://ecodataretriever.org
Ecological Niche Modelling on Docker: https://github.com/ghuertaramos/ENMOD
Ecopath: https://ecopath.org/
EIGENSOFT: https://hsph.harvard.edu/alkes-price/software/eigensoft
Environmental Data Commons: https://edc.occ-data.org
Experiment Factory: https://expfactory.github.io
F1000Research guidelines: https://f1000research.com/for-authors/article-guidelines/
software-tool-articles
fmriprep: https://fmriprep.org
FSL project: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
GATK: https://gatk.broadinstitute.org
gdb: https://github.com/haggaie/docker-gdb
GEANT4: https://geant4.web.cern.ch
GeoServer: https://geoserver.org
GitHub Actions: https://github.com/features/actions
GitHub Container Registry: https://github.com/features/packages
Google Cloud Platform: https://cloud.google.com
GRASS GIS: https://grass.osgeo.org
Jenkins: https://jenkins.io
liftr: https://liftr.me/
LIGO Open Science Centre: https://losc.ligo.org
LXC: https://linuxcontainers.org
Marble Station: https://github.com/marblestation/docker-astro
Mesos: https://mesos.apache.org
NEST: https://nest-simulator.org
NeuroDebian: https://neuro.debian.net
NEURON: https://neuron.yale.edu/neuron
OpenShift: https://openshift.com/
Planet Research Data Commons: https://ardc.edu.au/program/planet-research-data-
commons
Podman: https://podman.io/
Puppet: https://puppet.com
QGIS: https://qgis.org
Quay: https://quay.io
Rocker project: https://rocker-project.org/
Rocket: https://github.com/rkt/rkt
Salmon: https://combine-lab.github.io/salmon
SciServer: https://sciserver.org
Singularity: https://sylabs.io/
STAR: https://github.com/alexdobin/STAR
strace: https://github.com/amrabed/strace-docker
SVTyper: https://github.com/hall-lab/svtyper

© Springer Nature Limited 2023

https://doi.org/10.1038/s43586-023-00236-9
https://dl.acm.org
https://aws.amazon.com
https://ansible.com
https://astropy.org
https://github.com/ENCODE-DCC/atac-seq-pipeline
https://bci2000.org/
https://mybinder.org/
https://bioconductor.org
https://biocontainers.pro
https://www.bioinformatics.babraham.ac.uk/projects/bismark/
https://github.com/genome/breakdancer
https://hub.docker.com/u/cern
https://chef.io
http://codeocean.com
https://containerd.io/
https://hub.docker.com
https://earthdata.nasa.gov
https://ecodataretriever.org
https://github.com/ghuertaramos/ENMOD
https://ecopath.org/
https://hsph.harvard.edu/alkes-price/software/eigensoft
https://edc.occ-data.org
https://expfactory.github.io
https://f1000research.com/for-authors/article-guidelines/software-tool-articles
https://f1000research.com/for-authors/article-guidelines/software-tool-articles
https://fmriprep.org
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://gatk.broadinstitute.org
https://github.com/haggaie/docker-gdb
https://geant4.web.cern.ch
https://geoserver.org
https://github.com/features/actions
https://github.com/features/packages
https://cloud.google.com
https://grass.osgeo.org
https://jenkins.io
https://liftr.me/
https://losc.ligo.org
https://linuxcontainers.org
https://github.com/marblestation/docker-astro
https://mesos.apache.org
https://nest-simulator.org
https://neuro.debian.net
https://neuron.yale.edu/neuron
https://openshift.com/
https://ardc.edu.au/program/planet-research-data-commons
https://ardc.edu.au/program/planet-research-data-commons
https://podman.io/
https://puppet.com
https://qgis.org
https://quay.io
https://rocker-project.org/
https://github.com/rkt/rkt
https://combine-lab.github.io/salmon
https://sciserver.org
https://sylabs.io/
https://github.com/alexdobin/STAR
https://github.com/amrabed/strace-docker
https://github.com/hall-lab/svtyper

	Containers for computational reproducibility
	Introduction
	Dependency hell in scientific research

	Experimentation
	Introducing containers
	The Docker platform
	Getting started with containers
	Personalizing containers
	Complements and alternatives to Docker

	Results
	Compatibility across systems
	Reliability across versions
	Resource allocation
	Implications for large-scale collaborative efforts

	Applications
	Neuroscience
	Ecology
	Genomics
	Astronomy
	Physics
	Environmental science

	Reproducibility and data deposition
	Sharing containers
	Best practices in commenting and documenting
	Communication and dissemination of research findings

	Limitations and optimizations
	Costs of containerization
	Limitations of containerization
	Adapting containers to HPC environments

	Outlook
	Acknowledgements
	Fig. 1 Docker architecture.
	Table 1 Containers versus virtual machines.
	Table 2 Docker, Singularity and Podman feature comparison.
	Table 3 Best practices for commenting and documenting containers.

